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Abstract
I developed and tested a framework to calculate the non-thermal emission from simulated galaxies origi-
nating from cosmic rays (CR). This comprises the synchrotron, inverse Compton (IC) and bremsstrahlung
emission from CR electrons, as well as the gamma-ray emission from neutral pion decay resulting from
hadronic interactions of CR protons with the ambient medium. Moreover, the secondary electron and
positron production is calculated and their contribution to the non-thermal emission is evaluated. The
resulting code is applied to magneto-hydrodynamic simulations of galaxies, which include a self-consistent
treatment of CRs, that are injected at remnants of core-collapse supernovae, within a sub-grid physics
treatment. Assuming steady-state and neglecting explicit spatial diffusion and advection of CR electrons,
we take into account all relevant energy loss processes and obtain an equilibrium spectrum for the primary
and secondary electrons and positrons. In addition to the CMB, we also account for the stellar radiation
field as seed photons for IC scattering. We show the resulting multifrequency spectra and the correspond-
ing radio- and gamma-ray emission maps for four simulated galaxies, i.e., a dwarf galaxy and a Milky-Way
like galaxy at two evolutionary stages, respectively. These indicate a minor contribution of primary to
secondary emission. While the obtained luminosities agree with the observed FIR-gamma-ray relation,
they can not reproduce the observed FIR-radio correlation, since the magnetic field of the analyzed gala-
xies is still in the early phase that is characterized by exponential growth. Hence, the magnetic dynamo
has not saturated yet, in contrast to the low-redshift galaxies we observe today. Further improvement
of the code will enable the post-processing of simulations with higher resolution at more time steps in
order to obtain further insight into the underlying physics of the observed FIR-radio and FIR-gamma-ray
relations and to test the impact of CR feedback on galaxy formation.

Zusammenfassung
In dieser Arbeit wurde eine Methodik zur Berechnung der nicht-thermischen Strahlung von simulierten
Galaxien entwickelt, die durch kosmische Strahlung (cosmic rays, CR) hervorgerufen wird. Diese bein-
haltet Synchrotronstrahlung, Inverse Compton (IC) Strahlung und Bremsstrahlung von CR-Elektronen
sowie Gammastrahlung durch den Zerfall von neutralen Pionen, die in hadronischen Interaktionen der
CR-Protonen mit dem umgebenden Medium entstehen. Des Weiteren wird der Beitrag der Strahlung von
sekundären Elektronen und Positronen berechnet. Der entwickelte Code wird anschließend auf magneto-
hydrodynamische Simulationen von Galaxien angewendet, basierend auf einem selbst-konsistenten Modell
von CRs, die an der Schockfront von Supernovas injiziert werden. Unter der Annahme eines dynamischen
Gleichgewichtszustandes und unter Vernachlässigung von räumlicher Diffusion und Advektion der Elektro-
nen erhalten wir ein Gleichgewichtsspektrum der Elektronen, wobei alle relevanten Energie-Verlustprozesse
berücksichtigt werden. Zusätzlich zur kosmischen Hintergrundstrahlung verwenden wir für die IC Streu-
ung auch Photonen des Strahlungsfeldes von Sternen. Schließlich erhalten wir Multifrequenz-Spektren
und Emissions-Karten der Radio- und Gammastrahlung für vier simulierte Galaxien: eine Zwerg-Galaxie
sowie eine Milchstraßen-ähnliche Galaxie zu jeweils zwei unterschiedlichen Zeitpunkten. Diese deuten
darauf hin, dass die primären Elektronen nicht erheblich zur gesamten Strahlung beitragen. Während
die erhaltenen Leuchtkräfte mit der beobachteten Relation von Ferninfrarot- zu Gammastrahlung übere-
instimmen, können sie die Korrelation von Radio- zu Ferninfrarot-Strahlung nicht reproduzieren, da das
Magnetfeld der hier analysierten Galaxien sich noch im frühen Stadium des exponentiellen Wachstums
befindet. Daher ist der magnetische Dynamo noch nicht im saturierten Zustand, im Gegensatz zu den
heute beobachteten Galaxien bei niedriger Rotverschiebung. Weitere Verbesserungen am Code werden
es uns in Zukunft ermöglichen, Simulationen mit besserer Auflösung zu mehreren Zeitpunkten der En-
twicklung zu analysieren und somit einen tieferen Einblick in die Physik der beobachteten Relationen von
Ferninfrarot-, Gamma- und Radiostrahlung zu erhalten und die Auswirkungen von CRs auf die Entste-
hung von Galaxien zu untersuchen.
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1 Introduction
More than 100 years ago, on 7 August 1912, a ballon flight by F. Hess (1912) led to the discovery of
cosmic rays (CR). Instead of a decrease, the electroscopes on board measured an increase in ionization of
the atmosphere with altitude, suggesting that the origin of this finding is non-terrestrial. Still, the nature
of these particles remained unclear. Today we know that most of CR particles constitute of ionized nuclei,
about 90% protons, 9% alpha particles and a few heavier nuclei, as well as a small fraction of electrons,
positrons and antiprotons (Gaisser 1990). Their energy spectrum, i.e., the number of particles at energy E
in an interval dE, is measured to be a power law. It ranges from a few hundred MeV up to 1020 eV, hence,
CRs are relativistic particles, a few of them are even ultra-relativistic. At around 1015 eV, the differential
spectrum has a characteristic feature that is called “knee”, where it changes its slope from a spectral index
of around −2.7 to −3.1. It flattens again to a spectral index of −2.6 at around 1018 eV at the so called
“ankle”. This corresponds to a huge change in the integral flux, i.e., the number of particles incident per
unit time, area and steradian. Whereas at ∼ 1 TeV, about 105 particles per square kilometer, second and
steradian reach the earth’s atmosphere, only 1 particle per square kilometer and per steradian arrives per
century with an energy of ∼ 1020 eV (Beig et al. 2001). Despite the rarity of these high energetic particles,
since only 1 out of 109 interstellar particles is a cosmic ray particle, their energy density is comparable to
that of thermal particles (Zweibel 2013). Hence, they inevitably play a crucial role in galaxy formation
and evolution, e.g., by driving galactic winds (Breitschwerdt et al. 1991). Up to the ankle, cosmic rays
are assumed to be accelerated in core-collapse supernovae (SN), driving strong shocks in the interstellar
medium (ISM), and therefore being of Galactic origin. Beyond the ankle though, they do not seem to be
confined to the Galaxy, since the gyro radii of these highly relativistic particles are larger than the size of
the Galaxy. Hence, the source of these CRs has to be extragalactic. The very low-energy part of the CR
spectrum on the other hand is modified by interactions of the charged particles with the magnetic field
of solar winds, that prevents them to reach the Earth up to an energy per unit charge Z of a particle of
around 10 GeV/Z, above which the impact of solar winds can be neglected (Gaisser 1990).

The strong connection between CRs and the physical properties of a galaxy can be deduced from
observationally obtained relations, such as a tight linear correlation between the star formation rate
(SFR) and radio luminosities, as well the gamma-ray luminosities of star-forming galaxies. Since CRs
contain relativistic electrons interacting with magnetic fields, they emit synchrotron radiation, which
is mainly visible in radio wavelengths. The young stellar population of massive stars in actively star-
forming galaxies leads to core-collapse SN explosion, which drive the acceleration of CRs and thus the
emission of radio synchrotron radiation. Moreover, the radiation from stars is mainly emitted in form
of ultraviolet (UV) light, which is reradiated in the far-infrared (FIR) due to the absorption by dust
grains. Assuming the galaxy to be optically thick to UV radiation and assuming an universal electron
acceleration efficiency at supernova remnants (SNR), the radio emission is thus a calorimetric measure
of the star formation rate of a galaxy. Furthermore, the CR electron population also interacts with the
ambient radiation field from stars, dust and the cosmic microwave background (CMB). These seed photons
can scatter off of the highly relativistic leptons and thus lead to X-Ray or gamma-ray emission. As a
consequence of free-free transitions of the electrons in the electrostatic field of ions in the ISM, relativistic
bremsstrahlung contributes to the radiation spectrum as well. Another contribution to the gamma-ray
emission originates from the hadronic interactions of the CR proton population with the ambient medium,
leading to the creation of pions that subsequently decay into two gamma-ray photons, if the pions are
neutral. Consequently, the gamma-ray luminosities of star-forming galaxies are similarly linked to the
SFR and thus also the FIR emission. However, the positively and negatively charged pions produced in
proton-proton collisions decay further into muons and hence constitute a source of secondary electrons
and also positrons. These again undergo the same radiation processes as the so called primary electrons,
that have been directly injected into the ISM. The surprisingly tight relation and the normalization of
these relations give fundamental insights into the physical processes happening in galaxies with properties
in a large dynamical range. In case of the FIR-radio correlation, it spans over five decades in luminosity
and gas surface density (e.g. van der Kruit 19711973; Condon 1992; Bell 2003) and it holds also on smaller
scales of a few hundred parsecs, not only for the entire galaxy (e.g. Beck and Golla 1988; Bicay and Helou
1990; Murphy et al. 2008).
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The goal of this work is to develop a tool that calculates the multifrequency non-thermal emission
from a given CR proton and electron distribution. This distribution is not required to be a simple power
law, since due to energy loss processes the spectra can be modified. Therefore, we first derive the required
formulas for the leptonic radiation processes, before we discuss different models for the description of
hadronic interactions. From this we obtain also the hadronic contribution to the non-thermal emission,
which comprises the gamma-ray emission from neutral pion decay and the emission from secondary elec-
trons and positrons. This code is then used for the post-processing of hydrodynamical galaxy simulations.
Consequently, we obtain spatially and temporally resolved overall emission spectra of simulated galaxies
that can be used to reconcile the existing models and compare the results to observations.

2 Non-thermal Emission of Cosmic Rays
As already mentioned, the distribution of CRs is observed to be a power-law distribution, which can be
motivated by the following considerations (see e.g. Bell 1978; Gaisser 1990). In the process of first-order
Fermi acceleration (Fermi 1949), a charged particle gains energy in each scattering process back and forth
an astrophysical shock front, where the post-show medium acts as an approaching mirror. If the particle
gains an amount of energy that is proportional to its energy, ∆E = ξE, it has after n encounters the
energy En = (1 + ξ)nE0. Rearranging this gives the number of encounters needed to obtain an energy E
as

n =
ln
(
E
E0

)
ln (1 + ξ)

. (1)

The probability, that this same particle is after n encounters still participating in this process, is given
by (1−Pesc)n, where the escape probability is denoted by Pesc. Hence, we can sum over m ≥ n to obtain
the number of particles that have an energy larger than E:

N(> E) ∝
∞∑
m=n

(1− Pesc)m = (1− Pesc)n
∞∑
m=0

(1− Pesc)m. (2)

This can be further simplified by using the geometrical series to yield the expression

N(> E) ∝ (1− Pesc)n
1

1− (1− Pesc)
=

(1− Pesc)
n

Pesc
. (3)

After substituting equ. (1) for n we can rewrite this as the desired power law

N(> E) ∝ 1

Pesc

(
E

E0

)−ã
, (4)

with

ã =
ln
(

1
1−Pesc

)
ln(1 + ξ)

≈ Pesc

ξ
. (5)

It can be further derived that Pesc ≈ 4v2/c and ξ = 4(v2 − v1)/(3c), where v1 is the velocity of the
approaching gas (’upstream’) and v2 the velocity of the shocked gas (’downstream’) in the rest frame of
the shock. Hence, we obtain the spectral index for the cumulative distribution

ã =
3

v1
v2
− 1

, (6)

which yields for the differential spectrum an index a = ã+ 1. For a strong shock, the ratio v1/v2 = 4 and
hence a = 2, which is very close to the observed spectral index of galactic CRs.

In the following, we define the differential CR particle spectrum per unit volume as a power law in
momentum

4



Ni(pi) =
d2Ni

dpidV
= Cip

−ai
i θ(pi − qi), (7)

where the index i = {e, p} represents either electrons or protons. Here, Ce,p gives the normalization of the
spectrum, q denotes the lower momentum cut-off of the distribution and θ is the Heaviside step function.
We normalize the momentum pe to mec for the distribution of electrons and pp to mpc for the distribution
of protons. Note that in the literature, the power-law distribution is frequently given as a distribution in
energy, i.e., as a function of the Lorentz factor γe,p =

√
1 + p2

e,p = E/(me,pc
2). Only in the relativistic

limit p � 1, this yields the same spectrum. The normalization of the proton spectrum can be obtained
from the energy density of the CR population

εCR =

∞̂

0

dppNp(pp)Ekin(pp)

=
Cpq

1−ap

ap − 1

[
1

2
Bx

(
ap − 2

2
,

3− ap

2

)
+ q1−ap

(√
1 + q2 − 1

)]
,

where Bx(a, b) with x = 1/(1 + q2) denotes the incomplete Beta function and the kinetic energy is given
by Ekin(pp) =

(√
1 + p2

p − 1
)
mpc

2. We define the ratio of electrons to protons Kep as the ratio of the
differential distributions at a momentum p0 that is given in units of mpc, i.e.,

Kep =
Ne

(
p0mpc
mec

)
dpe

Np (p0) dpp
. (8)

Using dpe = dppmp/me and the definitions for the momentum distributions with the same power law
index a, this yields

Kep =
Ce

(
p0mp

me

)−a
mp

Cp (p0)
−a
me

=
Ce

Cp

(
mp

me

)−a+1

. (9)

The non-thermal emission processes of electrons that are distributed according to such a continuous
power law distribution can be described analytically, under the assumption of highly relativistic electrons
and a spectrum with no cut-off. In reality though, the initial simple power law CR electron spectrum is
modified due to several energy loss processes (see Section 3.2). Hence, we aim to calculate the emission
spectrum for a general distribution of electrons, that we approximate by a binned spectrum in logarithmic
scale.

2.1 Electrons
Highly relativistic electrons experience different processes that lead to the emission of non-thermal radia-
tion. These are being discussed in the following, where the derivations of the formulas mainly follow the
calculations by Rybicki and Lightman (1986) and Longair (2011), as not stated otherwise in the text.

2.1.1 Synchrotron Emission

When charged particles are accelerated by a magnetic field, they radiate according to Larmor’s formula.
While cyclotron radiation from non-relativistic particles emits the frequency that corresponds to the
frequency of gyration, the so called synchrotron radiation is generated by relativistic particles and the
emission spectrum is much more complex.

Starting with the motion of a particle that gyrates around a magnetic field with frequency ωB =
qB/(γmc) we have the equation of motion:

mγ
dv

dt
=
q

c
v×B. (10)
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Figure 1: Geometry for calculating the radiation of an accelerated charged particle, following Rybicki and
Lightman (1986)

This shows that particles are only accelerated perpendicular to the magnetic field. Larmor’s formula for
the emission of a singly accelerated charge q yields the emitted power

P =
2q2v̇′

2

3c3
, (11)

where the acceleration v̇′ of the particle is evaluated in its rest frame. Using the transformations v̇′‖ = γ3v̇‖
and v̇′⊥ = γ2v̇⊥, we obtain

P =
2q2

3c3
γ4(v̇2

⊥ + γ2v̇2
‖). (12)

Since the acceleration only has a component perpendicular to the magnetic field, i.e. v̇‖ = 0, and
v̇⊥ = ωBv⊥, the total emitted radiation is given by

P =
2q2

3c3
γ2 B2

m2c4
v2
⊥. (13)

This can be averaged over an isotropic distribution of velocities,
〈
v2
⊥
〉

= v2
´

sin2 αdΩ/4π = 2v2/3,
which yields for the emitted power

Psync =
4

3
σTcβ

2γ2uB , (14)

where the magnetic energy density is uB = B2/(8π) and the Thomson cross-section is σT = 8πr2
0/3 . For

a specific pitch angle, which is the angle between the magnetic field and the velocity of the particle, the
total emitted radiation is

P =
2q4B2γ2β2 sin2 α

3m2c3
. (15)

After these general considerations, we calculate the frequency dependence of the emitted radiation,
i.e. the spectrum of synchrotron emission. Starting from the Liénard-Wichert potentials one can derive
an expression for the electric field of a relativistically moving accelerated charge as follows

E(r, t) =
q

c

{ n

κ3R
×
[
(n− β) × β̇

]}
, (16)

where the definition of the used vectors can be seen in Fig. 1 with β = v/c = ṙ0/c and κ = 1 − n · β.
This enables us to derive the energy per unit frequency per unit solid angle as
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Figure 2: Graphical representation for calculating the synchrotron emission, following Rybicki and Light-
man (1986)(left) and as seen from the z-direction (middle) and in the new coordinate system (right).

dW

dωdΩ
=

c

4π2

∣∣∣∣ˆ [RE(t′)] eiωtdt

∣∣∣∣2 =
q2

4π2c

∣∣∣[n×
{

(n− β) × β̇
}
κ−3

]
eiωtdt

∣∣∣2 , (17)

where the retarded time t′ = t−R(t′)/c is the time when the radiation was emitted, which is received at
time t at a distance R of the observer. Assuming that the observer is far away from the origin and the
observed particle, i.e. |r0| � |r|, it follows that R(t′) ≈ |r| −n · r0(t′) and the variable of integration can
be changed to

dt = dt′
(

1 +
dR(t′)

dt′
1

c

)
= dt′(1− n · β) = κdt′.

Therefore, we have

dW

dωdΩ
=

q2

4π2c

∣∣∣∣∣∣
∞̂

−∞

[
n×

{
(n− β)× β̇

}
κ−2

]
eiω(t′−n·r0(t′)/c)dt′

∣∣∣∣∣∣
2

. (18)

The expression in squared brackets can be further simplified by evaluating d
dt

[
κ−1 (n× (n× β)

]
=

n×
[
(n− β) × β̇

]
κ−2. This makes it easy to perform an integration by parts, which yields

dW

dωdΩ
=

q2

4π2c

∣∣∣∣∣∣
∞̂

−∞

[
κ−1 (n× (n× β)

]
iωκeiω(t′−n·r0(t′)/c)dt′

∣∣∣∣∣∣
2

=
q2ω2

4π2c

∣∣∣∣∣∣
∞̂

−∞

[(n× (n× β)] eiω(t′−n·r0(t′)/c)dt′

∣∣∣∣∣∣
2

. (19)

In the next step, the factor n× (n× β) needs to be further evaluated. Therefore, a new coordinate
system is chosen that makes the calculation more convenient. At time t′ = 0 the origin of the coordinate
system is placed on the particle, with the radius of its orbit at that time lying in the x-y-plane. At time t′
it forms an angle with the y-axis ϕ = vt′/a. The unit vector n, which points towards the observer, forms
the new coordinate system together with the unit vector ε⊥, which is parallel to the y-axis, and a third
unit vector ε‖ = n× ε⊥. The x- and y-components of the velocity are easy to obtain from Fig. 2 and
read vx = ix |vx| = ix |v| cosϕ and vy = iy |vy| = ε⊥ |v| sinϕ with ix and iy being the unit vectors along
the x- and y-axis. According to the right panel of Fig. 2, the unit vector in x-direction can be expressed
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Figure 3: Geometry of the orbit of an accelerated charged particle.

in terms of the new coordinate system as ix = n cos θ−ε‖ sin θ such that vx = |v| cosϕ(n cos θ−ε‖ sin θ).
Using this, the velocity vector can be written as

v = vx + vy = |v| (ε⊥ sinϕ+ n cos θ cosϕ− ε‖ sin θ cosϕ). (20)

Taking the cross product of n and β = v/c gives

n× β =
v

c

(
ε‖ sinϕ+ ε⊥ sin θ cosϕ

)
, (21)

with v = |v| and where we have made use of the relations ε‖ = n× ε⊥, ε⊥ = −n× ε‖ and n× n = 0.
By applying them again, we finally get for the first factor of equ. (19) the expression

n× (n× β) =
v

c

(
ε‖ sin θ cosϕ− ε⊥ sinϕ

)
. (22)

For the argument of the exponential function in the second factor of equ. (19) we need an expression
for r0(t) in terms of the new coordinate system. As can be seen from Fig. 3, the x- and y-components
of this vector are given by r0,x = ix |r0| cosφ and r0,y = iy |r0| sinφ, where, again, iy = ε⊥ and ix =
n cos θ − ε‖ sin θ. Furthermore, we also see from Fig. 3 that |r0| = 2a sinφ, so that we get

r0(t) = r0,x + r0,y = 2a sinφ
(
n cos θ cosφ− ε‖ sin θ cosφ+ ε⊥ sinφ

)
. (23)

This reduces to n · r0(t′) = 2a sinφ cos θ cosφ, since n · ε‖ = n · ε⊥ = 0. After noticing from Fig. 3 that
φ = vt′/(2a), we get for the argument of the second factor

t′ − n · r0(t′)

c
= t′ − 2a

c
sin

(
vt′

2a

)
cos

(
vt′

2a

)
cos θ. (24)

Note that there is a typo in this equation in Longair (2011) in his equation (8.34). Since synchrotron
radiation is strongly beamed, which means that it is emitted into a cone with half opening angle ∼ 1/γ � 1
and we can only see radiation for small values of θ, which also corresponds to small values of ϕ = vt′/a
and φ = vt′/(2a), as can be seen from Fig. 2, we can expand all expressions up to third order in θ, φ and
ϕ, that is

sinx ' x− x

3!
+ ...

cosx ' 1− x2

2!
+ ... (25)

We insert these expressions into equ. (24) to obtain
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t′ − n · r0(t′)

c
= t′(1− v

c
) +

v

c

θ2

2
t′ +

v3

6ca2
t′3 (26)

For highly relativistic particles, as v approaches c, we can use the approximation

1− v

c
=

1− v2

c2

1 + v
c

≈ 1

2γ2
(27)

and set v = c elsewhere. Thus, we have

t′ − n · r0(t′)

c
=

1

2γ2

[
t′(1 + γ2θ2) +

c3

6ca2
t′3
]
. (28)

The small angle approximation to first order leads in equ. (22) to the expression

n× (n× β) ' −vt
′

a
ε⊥ + θε‖. (29)

We now combine equ. (28) and (29) with equ. (19) to get the emitted spectrum in the ε⊥- and ε‖ -
direction to be

dW‖

dωdΩ
=
q2ω2θ2

4π2c

∣∣∣∣∣∣
∞̂

−∞

exp

{
iω

2γ2

[
t′(1 + γ2θ2) +

c2

6a2
t′3
]}

dt′

∣∣∣∣∣∣
2

, (30)

dW

dωdΩ
=
q2ω2

4π2c

∣∣∣∣∣∣
∞̂

−∞

ct′

a
exp

{
iω

2γ2

[
t′(1 + γ2θ2) +

c2

6a2
t′3
]}

dt′

∣∣∣∣∣∣
2

. (31)

In order to perform the integration over t′, it is useful to substitute θ2
γ = 1 + γ2θ2, y = γct′/aθγ and

η = ωaθ3
γ/3cγ

3 to get dt′ = aθγdy/γc and

dW

dωdΩ
=
q2ω2θ2

4π2c

(
aθγ
γc

)2
∣∣∣∣∣∣
∞̂

−∞

exp

[
3

2
iη(y +

1

3
y3)

]
dy

∣∣∣∣∣∣
2

, (32)

dW⊥
dωdΩ

=
q2ω2θ2

γ

4π2cγ2

(
aθγ
γc

)2
∣∣∣∣∣∣
∞̂

−∞

y exp

[
3

2
iη(y +

1

3
y3)

]
dt′

∣∣∣∣∣∣
2

. (33)

Using now the relation eix = cosx+ i sinx and the fact that sinx and x cosx are odd functions, we are
only left with two integrals that can be evaluated with formulas (10.4.22) fo (10.4.32) from Abramowitz
and Stegun (1965),

∞̂

−∞

cos

[
3

2
η(y +

1

3
y3)

]
dy =

2√
3
K1/3(η),

∞̂

−∞

y sin

[
3

2
η(y +

1

3
y3)

]
dy =

2√
3
K2/3(η). (34)

This yields
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Figure 4: Schematic illustration of synchrotron emission, following Rybicki and Lightman (1986)

dW‖

dωdΩ
=
q2ω2θ2

3π2c

(
aθγ
γc

)2

K2
1/3(η),

dW⊥
dωdΩ

=
q2ω2

3π2c

(
aθ2
γ

γ2c

)2

K2
2/3(η). (35)

Over one full period of the electron orbiting around the magnetic field, the solid angle of the emitted
radiation can be approximated by dΩ ≈ 2πradrx/r

2
d = 2π sinαdθ (with sinα = ra/rd and dθ = drx/rd,

see Fig. 4) since the radiation is confined to a very small angle θ ∼ 1/γ as already mentioned above.
Therefore, the integration over solid angle yields

dW

dω
=

2q2ω2a2 sinα

3πc3γ2

ˆ
θ2θ2

γK
2
1/3(η)dθ,

dW⊥
dω

=
2q2ω2a2 sinα

3πc3γ4

ˆ
θ2
γK

2
2/3(η)dθ, (36)

where the limits can be taken to be from −∞ to ∞ as the integrand is concentrated to small values of θ.
The following integrals have been obtained by Westfold (1959) and read

∞̂

−∞

θ4
γK

2
2/3(

x

2
θ3
γ)dθ =

π√
3γx

 ∞̂
x

K5/3(z)dz +K2/3(x)

 ,
∞̂

−∞

γ2θ2θ2
γK

2
1/3(

x

2
θ3
γ)dθ =

π√
3γx

 ∞̂
x

K5/3(z)dz −K2/3(x)

 , (37)

where x = ω/ωc = 2ωa/(3cγ3), the critical frequency is ωc = 3/2 γ3ωB sinα and the frequency of gyration
is ωB = qB/(γmec). Using these relations in equ. (36) and defining F (x) = x

´∞
x
K5/3(x)dx and G(x) =

xK2/3(x) gives

dW‖

dω
=

√
3q2γ sinα

2c
[F (x)−G(x)] ,

dW⊥
dω

=

√
3q2γ sinα

2c
[F (x) +G(x)] . (38)

This has to be divided by T = 2π/ωB = 2πγmec/(qB) in order to account for the fact that we
calculated the emission during a full period of the electron orbiting around the magnetic field. Then, the
sum of the two components yields the total emissivity of the radiation
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dW

dωdt
=

1

T

(
dW‖

dω
+

dW⊥
dω

)
=

√
3q3B sinα

2πmec2
F (x), (39)

which is the emitted power per unit volume and unit frequency for a highly relativistic electron and is
also often called P (ω).

The function F (x) = x
´∞
x
K5/3(ξ)dξ contains the modified Bessel function of second kind of order

5/3. This now has to be integrated over a given electron-distribution. For a given distribution of electrons
N(γ), we integrate this expression over the distribution of all electrons to get the total emission spectrum

Ptot(ω) =

√
3e3B

2πmec2
sinα

∞̂

0

N(γ)F

(
ω

ωc

)
dγ. (40)

For a power-law distribution of electrons that is given by N(γ) = Cγ−a, the integral can be calculated
analytically. Therefore, one changes the variable γ to x = ω/ωc = 2mcω/(3γ2eB sinα) with dγ/dx =

−1/2
[
2mcω/(3x3eB sinα)

]0.5 such that equ. (40) becomes

Ptot(ω) =

√
3e3CB sinα

4πmec2

(
2mecω

3eB sinα

)− a−1
2
∞̂

0

x
a−3
2 F (x)dx. (41)

Using the relation
∞̂

0

xµF (x)dx =
2µ+1

µ+ 2
Γ

(
µ

2
+

7

3

)
Γ

(
µ

2
+

2

3

)
(42)

we obtain for the emitted spectrum of a power law distribution of electrons for a fixed pitch angle α the
expression

Ptot(ω) =

√
3e3CB sinα

2πmec2(a+ 1)

( mecω

3eB sinα

)− a−1
2

Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)
. (43)

This can be further evaluated for an isotropic distribution of pitch angles

1

2

π̂

0

sin(a+3)/2(α)dα =

√
π

2

Γ(p+5
4 )

Γ(p+7
4 )

(44)

to yield

Ptot(ω) =
dE

dtdωdV
=

√
3π

16π

Ce3

mec2
(a+ 7

3 )

a+ 1

Γ( 3a+7
12 )Γ( 3a−1

12 )Γ(a+5
4 )

Γ(a+7
4 )

B
(mecω

3eB

)− a−1
2

. (45)

Since we are not going to have a continuous distribution of electrons, but a binned spectrum, it is
useful to derive the corresponding formulas. Starting from equ. (40) and inserting in the function F (x)
and the definition for ωc, we obtain

Ptot(ω) =
e2ω√
3πc

∞̂

0

1

γ2
N(γ)

∞̂

ω/ωc

K5/3(ξ)dξdγ. (46)

Note that ω/ωc = 2mcω/(3γ2eB sinα) is a function of γ and α. If the given energy distribution of
electrons N(γi) = Ai is a constant for each energy bin i, the limits of the first integral in equ. (46) are
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the boundaries of each bin, respectively, and the total emission is then given by the sum over all integrals
in the energy bins:

Ptot(ω) =
e2ω√
3πc

∑
i

Ai

γb,iˆ

γa,i

1

γ2

∞̂

ω/ωc

K5/3(ξ)dξdγ (47)

This double integral is computationally expensive and has to be further simplified. Therefore, we define
f ′(γ) = γ−2 and g(γ) =

´∞
ω/ωc

K5/3(ξ)dξ to perform integration by parts

γb,iˆ

γa,i

f ′(γ)g(γ)dγ =

[
− 1

γ
g

]γb,i
γa,i

−
γb,iˆ

γa,i

f(γ)g′(γ)dγ. (48)

For the calculation of g′(γ) the Leibniz integral rule can be applied, such that, with K5/3(x) → 0 for
x→∞ one obtains

g′(γ) = − d

dγ

(
2mcω

3γ2eB sinα

)
K5/3

(
2mcω

3γ2eB sinα

)
=

4mcω

3γ3eB sinα
K5/3

(
2mcω

3γ2eB sinα

)
.

Inserting this into equ. (48) and equ. (47) leads to a sum of 3 single integrals instead of a double integral,
which makes it easier to calculate it numerically. The resulting expression is

dE

dtdωdV
=

e2ω√
3πc

∑
i

Ai

[
1

γa,i

∞̂

C∗
γ2
a,i

sinα

K5/3(ξ)dξ − 1

γb,i

∞̂

C∗
γ2
b,i

sinα

K5/3(ξ)dξ (49)

+

γb,iˆ

γa,i

2C∗
γ4 sinα

K5/3

(
C∗

γ2 sinα

)
dγ

]
(50)

with C∗ = ω2mc/(3eB).
Aharonian et al. (2010) (AKP10 in the following) found an even more convenient way to calculate

F (x) in the emission spectrum, equ. (39), before integrating over an electron energy distribution and
provide an analytical fitting function that does not contain any special functions and is therefore even
faster to compute. Additionally they provide an approximation for the spectrum of an isotropic pitch
angle distribution G(x) = 1/2

´
F (x/ sinα) sin2 αdα. These are given by

F̃ (x) ≈ 2.15x1/3(1 + 3.06x)1/6 1 + 0.884x2/3 + 0.471x4/3

1 + 1.64x2/3 + 0.974x4/3
e−x, (51)

G̃(x) ≈ 1.808x1/3

√
1 + 3.4x2/3

1 + 2.21x2/3 + 0.347x4/3

1 + 1.353x2/3 + 0.217x4/3
e−x, (52)

and are supposed to provide an accuracy better than 0.2 % over the entire range of x. Here, the function
F̃ (x) can be directly substituted instead of F (x) in equ. (39), whereas G̃(x) already includes an integration
over an isotropic pitch angle distribution.

2.1.2 Inverse Compton Emission

When a photon is scattered inelasticly by a charged particle, either the particle gains energy from the
photon or vice versa, if the charged particle’s energy is larger than that of the photon. The latter is
called inverse Compton emission and describes the scattering process where a highly relativistic electron
transfers some of its energy to a low-energy photon. In a galactic context, these photons that can be
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up-scattered are originating from the interstellar radiation field, which consists mainly of infrared (IR)
dust emission and ultra violet (UV) and optical stellar emission, as well as the CMB.

Considering an incoming photon with energy E = hν in the rest frame of an electron that gains energy
in the scattering process, the energy E1 = hν1 of the outgoing photon decreases according to

E1 =
E

1 + E
mec2

(1− cos θ)
, (53)

where θ is the angle between the incoming and the scattered photon’s direction of motion. In the so
called Thomson limit, where hν � mc2, the scattering is nearly elastic, so that the photon hardly loses
any energy in the rest frame of the electron. Thus, the scattering process is described by the classical
Thomson scattering, where the cross-section is given by

dσT

dΩ
=

1

2
r2
0(1 + cos2 θ), (54)

which leads to a total cross-section of σT = 8/3πr2
0, where r0 = e2/(mec

2) is the classical electron radius.
As the photon energy becomes large, the recoil of the photon can not be neglected anymore and the
cross section is reduced. This can be obtained from quantum electrodynamics and is expressed in the
differential Klein-Nishina cross-section for unpolarized radiation as

dσKN

dΩ
=
r2
0

2

(
E1

E

)2(
E

E1
+
E1

E
− sin2 θ

)
(55)

which reduces again to the Thomson cross-section for E1 = E.
To calculate the average energy gain in the case of inverse Compton scattering, where the electron has

enough kinetic energy to transfer some of it to the incoming photon, we consider a Lorentz transformation
from an observer’s rest frameK to the electron’s rest frameK ′, in which the energy of the incoming photon
E′ and the out coming photon E′1 transform as

E′ = Eγ(1− β cos θ), (56)

E1 = E′1γ (1 + β cos θ′1) , (57)

where θ′1 is the scattering angle of the outgoing photon relative to the incident electron, see Fig. (5).
Therefore, with θ and θ′1 being typically of order π/2 and in the Thomson limit with E′1 ' E′, we obtain
E1 ' γ2E. As the Lorentz factor γ can be very large for highly relativistic electrons, the incoming photon
can gain a lot of energy, e.g. for γ = 1000, a far-infrared (FIR) photon can be up-scattered into the X-ray
regime. But still, the condition for Thomson scattering in the rest frame γE � mc2 has to be fulfilled.
Otherwise, the probability of the process is reduced and E′1 < E, which makes the scattering process less
effective.

To obtain the total emitted power by Compton scattering off a single electron, we have to integrate
the spectral emissivity over the incident photon energy distribution n(E) to get

PComp =
4

3
σTcβ

2γ2uph (58)

where the total energy density of photons is uph =
´
En(E)dE, that yields the total number of incident

photons per unit time cσTuph/ 〈E〉 with the average incident photon energy 〈E〉, such that for β ' 1
the mean energy of scattered photons is given by 〈E1〉 = 4/3γ2E. Comparing this with equ. (14), it is
striking that Psync/PComp = uB/uph, from where it becomes clear that synchrotron emission can also be
interpreted as scattering of electrons off virtual photons of the magnetic field.

The spectrum of the emission from inverse Compton scattering can be obtained by starting with a
physical assumption concerning the involved angles, see Jones (1968) and Blumenthal and Gould (1970)
for the following discussion. We consider a Lorentz transformation from the lab frame K to the electron
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Figure 5: Inverse Compton emission as seen from the lab frame K (left panel) and the rest frame of the
electron K ′ (right panel).

rest frame K ′ (see Fig. 5) to obtain the relation between the angle of the incoming photon as seen from
the two different frames:

tan θ′ =
sin θ

γ (cos θ − β)
→ − 1

γ
cot(

θ

2
), (59)

where γ and βc = v are the Lorentz factor and the velocity of the electron in the lab frame, respectively.
The last step is valid in the highly relativistic case, where β → 1. From this it becomes clear that an in
the lab frame isotropic radiation field is incident on the electron in it’s rest frame in a very narrow cone
in the direction of the negative x′ axis. Thus, in the following it is assumed that θ′ → 0. From this, one
can easily verify the order-of-magnitude estimate from above to get the maximum energy of a scattered
photon. Inserting β ≈ 1 − 1/2γ−2 into equ. (56) it follows directly that the photon energy in K ′ varies
from E′min ≈ E/2γ for θ = 0 to E′max ≈ 2γE for θ = π. For the scattered photon we have from equ.
(57) that E1,max ≈ 2γE′1 for θ′1 = 0. Hence, the case of Thomson scattering with E′1 = E′ we get the
maximum energy for the scattered photon in a head-on collision of electron and photon

E1,max ≈ 2γE′1 ≈ 4γ2E. (60)

In order to get the spectrum from inverse Compton scattering, we now consider the incoming photon field
in the rest frame of the electron, from which we derive the scattered radiation field. First, the differential
photon density in the lab frame is for an isotropic distribution given by dn = 1/2n(E)dEdx with x ≡ cos θ.
Using the Lorentz invariance of dn/E and |dE′/dx| = γβE → γE we obtain

dn′(E′;E) = n(E)
E′

2E2γ
dE (61)

for E/2γ < E′ < 2γE and 0 otherwise. The distribution of the scattered photons in K ′ is

dNγ,E
dt′dE′dΩ′1dE′1

= dn′(E′;E)c
dσ

dΩ′1dE′1
, (62)

which yields the energy distribution of scattered photons in the lab frame,

dNγ,E
dtdE1

=

¨
(E′,Ω′1)

dNγ,E
dt′dE′dΩ′1dE′1

dt′

dt

dE′dΩ′1dE′1
dE1

, (63)

where the indices γ and E imply that this still has to be integrated over the electron and initial photon
spectra to get the total emitted spectrum. But first, we have to decide in which case we are interested in
- the Thomson limit, or the general case, which is described by the Klein-Nishina formalism.

In the Thomson limit, we have from equ. (54) that

dσ

dΩ′1dE′1
→ 1

2
r2
0(1 + cos2 θ′1)δ(E′1 − E′). (64)
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After inserting this expression together with equ. (61) into equ. (62) and (63), it is convenient to use the
substitution η′1 = 1 − β cos θ′2 ≈ 1 − cos θ′2 since from equ. (57) we have E1 = γE′1 [1 + β cos(π − θ′2)] ≈
γE′1 (1− cos θ′2) ≈ γE′1η

′
1. This enables us to use dE′1/dE1 = 1/(γη′1) together with dt′/dt = 1/γ as well

as dΩ′1 = 2πdη′1 to finally get the result

dNγ,E
dtdE1

=
2πr2

0c

γ2E
f

(
E1

4Eγ2

)
n(E)dE (65)

with
f(x) = 2x lnx+ x+ 1− 2x2. (66)

I.e. the total number of photons of energy E1 produced per unit range of E1 per unit time that scatter
off of an electron with energy γmc2. The function f(x) from Blumenthal and Gould (1970) decreases
from f(0) = 1 to f(1) = 0, as x = 1 gives the maximum photon energy that can be produced in
the scattering (E1 ≤ 4Eγ2). As already mentioned before, equ. (65) now has to be integrated over
the electron energy distribution, where the integration limits are γmin = max

[
1/2 (E1/E)

1/2
, γ1

]
and

γmax = min
[
γ2, 1/2 (E1/E)

1/2
]
which results from kinematic considerations and γ1/2 are the ends of the

electron distribution. By assuming γ1 � 1/2 (E1/E)� γ2, the integration can be done from 0 to ∞.
For a power-law distribution of electrons, we obtain

dE

dtdE1dV
= Ceπr

2
0c2

a+3 a2 + 4a+ 11

(a+ 3)2(a+ 5)(a+ 1)
E
− a−1

2
1

∞̂

0

E(a−1)/2n(E)dE. (67)

Assuming that the incident radiation field can be approximated by a sum of black body distributions with
weights fi and temperatures Ti

n(E) =
∑
i

fi
E2

π2(~c)3 (exp(E/kBTi)− 1)
, (68)

the integral in equ. (67) can be evaluated in terms of the gamma function Γ and the Riemann Zeta
function, ζ , such that the result is the following:

dE

dtdν1dV
=

8π2r2
0Ce

h2c2
2a+3 a2 + 4a+ 11

(a+ 3)2(a+ 5)(a+ 1)
Γ

(
a+ 5

2

)
ξ

(
a+ 5

2

)
(hν1)

− a−1
2

[∑
i

fi(kBTi)
a+5
2

]

where i denotes the CMB, IR or stellar radiation field. For the CMB, we have kBTCMB ≈ 2.35× 10−4 eV.
For the interstellar radiation field or IR dust emission, it is common practice to provide the corresponding
photon energy density and the black-body temperature of the radiation spectrum. They are connected
with the dilution factor fi by the relation

uph = fiaradT
4 (69)

where the radiation constant arad = 4σ/c = 8π5k4
B/(15h3c3) ≈ 7.57× 10−15 erg cm−3 K−4.

For arbitrary E′ ≈ γE > mc2, the Klein-Nishina cross-section has to be used instead of equ. (64). In
terms of the variables used here, it reads

dσ

dΩ1dE′1
=

1

2
r2
0

(
E′1
E′

)2(
E′

E′1
+
E′1
E′
− sin θ′2

)
δ

(
E′1 −

E′

1 + E′

mec2
(1− cos θ′2)

)
(70)

and has to be inserted into equ. (62) and (63). The resulting scattered photon spectrum per electron, first
obtained by Jones (1968), is given by

dNγ,E
dtdE1

= 2πr2
0cγ
−2n(E)

dE

E

[
2q ln q + (1 + 2q)(1− q) +

1

2

(Γeq)
2

1 + Γeq
(1− q)

]
, (71)

15



Figure 6: Graphical illustration of bremsstrahlung emission as seen from the lab frame K (left) and the
electron rest frame K’ (right).

where Γe = 4Eγ/(mec
2), q = E∗1/(Γe(1− E∗1 )) and E∗1 = E1/(γmec

2). Here, Γe � 1 would again lead to
the result in the Thomson limit (see equ. 65), but now the formula can be used in any case and is only
based on the assumption of highly relativistic electrons with γ � 1. Equ. (71) has to be again integrated
over the radiation distribution at hand, i.e., equ. (68), as well as the electron energy distribution. Thus,
we obtain for the total emission spectrum

dE1

dtdν1
= 2πhE1r

2
0c

ˆ
dγ
N(γ)

γ2

ˆ
dE

E
n(E)f(q(E)). (72)

After changing the variable of integration γ → q(γ) = E∗1mec
2/(4Eγ(1− E∗1 )), this leads to

dE1

dtdν1
= 2πhE1r

2
0c

ˆ
dγ
N(γ)

γ2

1ˆ

qmin

dq

q
n(q)f(q) (73)

The integration limits for q follow from the kinematic limitations for E∗1 , i.e. E/γmec
2 ≤ E∗1 ≤ Γe/(1+Γe),

such that qmin =
[
4γ2(1− E/(γmec

2))
]−1 ≤ q ≤ 1. For a binned energy distribution of electrons, we get

dE1

dtdν1
= 2πhE1r

2
0c
∑
i

Ai

γb,iˆ

γa,i

dγ
1

γ2

1ˆ

qmin

dq

q
f(q) (74)

For a given black-body distribution, the second integral over q can be pre-evaluated for a certain range
of γ-values. This speeds up the numerical integration over the binned electron energy distribution.

2.1.3 Relativistic Bremsstrahlung

A third process that occurs when an electron gets accelerated in the field of a nucleus is called bremsstrahlung
or free-free-emission, since it can be seen as the transition between two unbound states. Even though a
detailed discussion of the resulting radiation would require quantum electrodynamics, we can gain useful
insights and derive the same functional behaviors for relativistic bremsstrahlung by the classical method
of virtual quanta, which is also called the Weizsäcker-Williams method. In this approach, we consider a
relativistic electron moving towards an ion with charge Ze that moves much slower in comparison. In the
rest frame of the electron, which is located on the y-axis with a distance b to the origin, the ion moves
towards the electron along the x-axis with velocity v. The electrostatic field of the ion appears to be a
pulse of electromagnetic radiation to the electron, which can scatter off of it and thus emit radiation.
Hence in this picture, the resulting bremsstrahlung emission after transforming back to the lab frame
(or the rest frame of the ion) can be interpreted as Compton emission from the scattering of the virtual
quanta from the ion’s electrostatic field in the frame of the electron.

The process of bremsstrahlung emission is sketched in Fig. 6 as seen in the lab frame K (left) and in
the electron rest frame K ′ (right). The basic relation in the Weizsäcker-Williams approach is thus given
by
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dσa = dσbdN, (75)

where the indices a and b relate to the panels in Fig. 6. An expression for the differential number of
incident photons dN can be found by considering the electromagnetic field of a uniformly moving charge,
see e.g., Rybicki and Lightman (1986). In the case of a highly relativistic charge that moves with velocity
v, Lorentz-factor γ and charge q in the direction of the x-axis with a distance of b, the electromagnetic
field components are given by

Ex = − qvγt

(γ2v2t2 + b2)3/2

Ey =
qγb

(γ2v2t2 + b2)3/2
(76)

Ez = Bx = By = 0

Bz = βEy.

It can be shown, that the maximum of Emax
y = qγ/b2 whereas Emax

x ∼ q/b2 which is the case when
t ∼ b/γv. This means that the field appears to be a pulse of radiation that is concentrated in the plane
transverse to its motion. The spectrum of this pulse of virtual quanta can be obtained by a Fourier
transformation

Ê(ω) =
qγb

2π

∞̂

−∞

(γ2v2t2 + b2)3/2eiωtdt. (77)

Solving this integral in terms of the modified Bessel function of order one gives the result

Ê(ω) =
q

πvb

bω

γv
K1

(
bω

γv

)
. (78)

Thus the spectrum from the highly relativistic moving ion with charge q = Ze as seen from the electrons
rest frame K ′ is given by

dW ′

dA′dω′
= c

∣∣∣Ê(ω)
∣∣∣2 =

(Ze)
2
c

π2b′2v2

(
b′ω′

γv

)2

K2
1

(
b′ω′

γv

)
. (79)

These virtual quanta are now scattered according to the corresponding cross-section, which is in the
low frequency limit ~ω . mc2 the Thomson cross-section, but for higher frequencies the Klein-Nishina
cross-section. In the Thomson limit, the scattered radiation is thus

dW ′

dω′
= σT

dW ′

dA′dω′
. (80)

The Lorentz transformation back to the lab system yields

dW

dω
=

8Z2e6

3πb2m2
ec

3v2

(
bω

γ2v

)2

K2
1

(
bω

γv

)
(81)

First, the integration over the impact parameter results in the emitted power of a single electron per unit
frequency, that in turn needs to be integrated over the distribution of electrons to obtain the resulting
radiation spectrum

dW

dtdV dω
=

pmaxˆ

pmin

 ∞̂

bmin

2πcni
dE

dω
bdb

n(p)dp. (82)

Following Zeković et al. (2013), they use a power-law distribution in momentum, n(p)dp = kep
−adp,

where the momentum is not normalized to mec. Therefore, we have to take into account that ke =
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Ce(mc)a−1, where Ce is the normalization for a power-law distribution as we defined it in equ. (7). Hence,
we obtain the expression

dW

dtdωdV
=

16Z2e6

3m2c4
nike (m~ω)

− a−1
2

xmaxˆ

xmin

1

2
x
a−3
2

√
1 +

mc2

~ω
xG(x)dx (83)

G(x) =

∞̂

x

yK1(y)dy = xK0(x)K1(x)− 1

2
x2(K2

1 (x)−K2
2 (x)) (84)

where x = ωbmin/(γ
2v) = ω~m/p2 and xmin/max = m~ω/p2

max/min. For a binned electron spectrum, which
is given by a constant value Ai in each interval [pi,a, pi,b], this yields

dW

dtdωdV
=

16Z2e6

3m2c4
(mc)−1ni

∑
i

Ai

pmax,iˆ

pmin,i

√
1 +

m2c2

p2
G(x(p))dp. (85)

The lower and upper limits of the integrals are pmax,i = min(pmin, pi,b) and pmin,i = max(pmax, pi,a).
For deriving the corresponding expression in the general case including the Klein-Nishina regime, one

can again use the scattering picture in the right panel of Fig. 5 and the corresponding kinematic and
transformation relations

E1 = E′1γ(1− cos θ′2), (86)

E′1 =
E′

1 + E′

mec2
(1− cos θ′2)

, (87)

which can be combined to obtain

E′ =
E′1

1− E′1
mec2

(1− cos θ′2)
=

E′1
1− E1

γmec2

=
E1

γ(1− cos θ′2)(1− E1

γmec2
)

(88)

From this one can read off the minimum and maximum values for the photon energy in the electron rest
frame before scattering E′ for a fixed E1 that is achieved in the lab frame after scattering,

E′min = E1/2γ(1− E1

γmec2
) (89)

and
E′max = E′1max

∼ γmec
2, (90)

where the latter derives from the estimate of ω′max ∼ γc/bmin and the minimum impact parameter
bmin ∼ ~/mec that can be understood in terms of the uncertainty principle. Transforming the differ-
ential solid angle in the Klein-Nishina cross section formula (70) according to dΩ′1 = 2πd(1 − cos θ′2) =

2π
[
E′γ(1− E1/γmec

2)
]−1

dE1 allows to write it as a function of E1 and E′

dσ

dE′dE1
= πr2

0

1

γE′

1− E1

γmec2
+

1

1− E1

γmec2

− 2

E′
E1/γ

1− E1

γmec2

+
1

E′2

(
E1/γ

1− E1

γmec2

)2
 . (91)

For comparison with the often used Bethe-Heitler cross section it is constructive to use a limiting
approximation for the modified Bessel function of first order in equ. (78), which is K1(x) → 1/x for
x� 1, that means b� γv/ω. From that we get the differential number of incident photons

dN =
c

~ω′
∣∣∣Ê(ω′)

∣∣∣2 dA′dω′ =
c

~ω′
q2

π2b′2c2
2πb′db′dω′. (92)
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For q = Ze and the fine structure constant α = e2/~c this becomes with dω′/ω = dE′/E′

dN =
2αZ2

π

db′

b′
dE′

E′
. (93)

Combining this together with equ. (91) and (75) and then integrating over E′ and b′ results in

dσ

dE1
= 4αr2

0Z
2 1

E1

[
4

3

(
1− E1

γmec2

)
+

(
E1

γmec2

)2
] ˆ

db′

b′
(94)

following Blumenthal and Gould (1970). The integration limits for b′ are b′min ∼ ~/mec and b′max ∼
γc/ω′min = ~γc/E′min, where E

′
min is given in equ. (89). Therefore, the integration over b′ gives

~γc/E′minˆ

~/mec

db′

b′
= ln

(
γmec

2

E′min

)
= ln

[
2γ2mec

2(1− E1

γmec2
)

E1

]
. (95)

By identifying E1 = ~ω, the initial energy of the electron Ei = γmec
2 and the final energy of the electron

after scattering Ef = Ei − ~ω, it can be rewritten as

dσ = 4αr2
0Z

2 dω

ω

(
4

3

(
1− ~ω

Ei

)
+

(
~ω
Ei

)2
)

ln

(
2EiEf

mec2~ω

)
. (96)

This can now be compared to the cross section derived by Bethe and Heitler (1934) in the Born
approximation for non-screened (fully ionized) ions and for the extreme relativistic case

dσ = 4αr2
0Z

2 dω

ω

1

E2
i

(
E2
i + E2

f −
2

3
EiEf

)(
ln

2EiEf
mec2~ω

− 1

2

)
. (97)

This is essentially the same as equ. (96), since the argument of the logarithm is � 1. As pointed out by
Haug (1997), if we consider middly and highly relativistic electrons, we can combine the non-relativistic
cross section obtained by Heitler (1954) with the extreme relativistic case that is expanded up to orders
p6
i,f . This yields the result

dσ =
2αZ2r2

0

kp2
i

{
4

3
εiεf + k2 − 7

15

k2

εiεf
− 11

70

k2(p2
i + p2

f )

(εiεf)4

}
×
{

2 ln
εiεf + pipf − 1

k
− pipf

εiεf
×

×

[
1 +

1

εiεf
+

7

20

p2
i + p2

f

(εiεf)3
+

(
9

28
k2 +

263

210
p2

i p
2
f

)
1

(εiεf)
3

]}
. (98)

Here, εi,f = Ei,f/mec
2, k = hν/mec

2 and pi,f is in units of mec. As this formula is given in the Born
approximation, where the distortion of the electron’s wave function near the Coulomb field of the nucleus
is neglected, an additional factor was introduced by Elwert (1939) to account for this effect:

fE =
af

ai

1− exp(−2πai)

1− exp(−2πaf)
(99)

where ai,f = αZεi,f/pi,f .
In addition to electron-ion bremsstrahlung, we also have to take into account electron-electron brems-

strahlung. While at low incident electron energies the quadrupole emission from the electron-electron
interaction can be neglected in comparison to the electron-nucleus dipole emission, it can make a significant
contribution for higher energetic electrons and emitted photons, e.g. the relative contribution from e-e-
bremstrahlung to e-p-bremsstrahlung emission is ∼ 25% at photon energies around 400 keV (Haug 1975a).
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The exact expression for the e-e-bremsstrahlung cross section was first derived by Haug (1975b), which
is quite long and numerically difficult to use, but Baier et al. (1967) derived a good approximation for
ultra-relativistic electrons, that is given in terms of ε1 = E1/(mec

2) by

dσee = (σ1 + σ2)A(ε1, γ)dε1 (100)

σ1 =
4r2

0α

ε1

[
4

3
(1− ε1

γ
) +

(
ε1
γ

)][
ln

2γ(γ − ε1)

ε1
− 1

2

]
(101)

σ2 =
r2
0α

3ε1



16(1− ε1 + ε21) ln γ
ε1
− 1

ε21
+ 3

ε1
− 4 + 4ε1 − 8ε21

−2(1− 2ε1) ln (1− 2ε1)
(

1
4ε31
− 1

2ε21
+ 3

ε1
− 2 + 4ε1

)
,

2
ε1

[(
4− 1

ε1
+ 1

4ε21

)
ln 2γ − 2 + 2

ε1
− 5

8ε21

]
,

ε1 ≤ 1
2

ε1 >
1
2 .

(102)

The factor A(ε1, γ) is a middly-relativistic correction factor that was introduced by Baring et al. (1999)
to be

A(ε1, γ) = 1− 8

3

(γ − 1)
1/5

γ + 1

(
ε1
γ

)1/3

.

According to them, the highly relativistic approximation combined with this factor yields an accuracy
within 10% compared to the exact expression by Haug (1975b).

2.1.4 Overview and Cross-Check

In order to get an overview of all the different non-thermal leptonic emission processes, we use a simple
power law distribution of electrons to calculate the resulting radiation spectrum. At the same time,
we compare the approach of a binned momentum spectrum to a continuous power-law distribution of
electrons. The spectrum is chosen to range from pe = 1 to pe = 106 with a power law index ae = 2.1.
Furthermore, we adopt B = 100µG and nH = 1cm−3. In Fig. 7 we show the resulting synchrotron (red),
bremsstrahlung (blue) and IC emission (green) for a continuous power-law distribution (PL) in comparison
to a binned spectrum. The IC emission is shown for IC scattering off of different photon fields, i.e., the
CMB and two different dust components with black-body temperatures of T = 100 K and T = 20 K, with
suitable dilution factors to obtain an energy density of ∼ 1 eV cm−3, respectively. Since for the analytical
derivation of the emissivity of synchrotron and IC emission the electron spectrum is assumed without a
cut-off in momentum, it also does not show a cut-off in emission, in contrast to my approach of a binned
spectrum including a cut-off. Using the extreme relativistic approximation for the bremsstrahlung cross
section (equ. 97) seems to be in good agreement with the exact description by Haug (1997), hence we
will adopt it in the following. Also the analytical approximation from equ. (51) and (52) by Aharonian,
Kelner and Prosekin (2010) (AKP10) fits in both cases of an isotropic distribution of pitch angles and a
fixed angle of α = π/2 the exact formalism.

2.2 Hadronic Interactions
The collision of CR protons with protons and other nuclei in the ambient interstellar medium lead to the
production of several secondary particles that are being discussed in the following. These interactions
constitute another source of non-thermal emission. In particular, inelastic proton-proton-collisions pro-
duce mainly pions, that lead to the production of secondary electrons or gamma-rays, depending on the
charge of the pions:

p + p −→ π± + X

p + p −→ π0 + X
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Figure 7: All leptonic radiation processes calculated with a binned electron spectrum compared to a
continuous power law distribution (PL).

π0 −→ 2γ

π+ −→ µ+ + νµ

π− −→ µ− + νµ

The muons decay further into secondary electrons, that contribute to the leptonic radiation processes
from primary electrons discussed above.

µ+ −→ e+ + νe + νµ

µ− −→ e− + νe + νµ

Another channel of secondary particle production is the process

p + p −→ K± + X

K+ −→ µ+ + νµ

K− −→ µ− + νµ

K± −→ π0 + π±

This is another source of charged and neutral pions and therefore of gamma-rays and secondary
electrons, that lead to leptonic radiation processes. The relative contribution of the two channels p+p −→
π± + X and p + p −→ K± + X depends on the proton energy and the Kaon-channel contribution reaches
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from 8% at about 100 GeV to 19% at 1 TeV before it approaches a value of 27% for higher energies (Gaisser
1990).

Before the resulting production spectra of all relevant secondary particles are discussed, a few defini-
tions are introduced in order to overview the different notations used in the literature, similarly to the
formalism used in Moskalenko and Strong (1998).

The production spectrum dNs/(dEsdtdV ), or source function, of a secondary particle species s =
γ, e−, e+ that results from the decay of a pion (with the right charge) that has been produced in a
proton-proton collision is given by

qs(Es) = cnH

∞̂

Emin
p

dEpJp(Ep)

Emax
π̂

Emin
π

dEπ
dσ(Ep, Eπ)

dEπ
fs,π(Es, Eπ) (103)

where Jp(Ep) is the energy distribution of incoming CR protons in units of erg−1 cm−3 and is connected
to the often used notation of Np(Ep) in units of cm−3 by

Jp(Ep) = Np(γp)
dγp

dEp
= Np(γp)/mpc

2. (104)

We have to be careful about the definition of Jp(Ep) being used in the literature, since it sometimes refers
to the proton energy flux per steradian c/(4π)Jp(Ep), but in that case, the formulas for the corresponding
source function include another factor of 4π to account for the integration over solid angle and the
speed of light c is omitted. The normalized energy distribution fs,π(Es, Eπ) gives the probability of
the production of a secondary particle s from a single pion energy Eπ. Furthermore, the differential
cross section for the production of a pion with energy Eπ from the collision of a proton with energy
Ep is denoted by dσ(Ep, Eπ)/dEπ and can be parametrized in different ways as will be discussed in the
following paragraphs. Also the limits of the integrals in equ. (103) will be analyzed later on.

In the literature, there are different parameterizations for the corresponding parts of equ. (103). In
particular, a production spectrum of pions from a given proton distribution is often calculated first, before
the integration over the pion energy is being performed. This so called pion source function is denoted
by qπ or Fπ and is given by

qπ(Eπ) = Fπ(Eπ) = cnH

∞̂

Emin
p

dEpJp(Ep)
dσ(Ep, Eπ)

dEπ
, (105)

such that

qs =

Emax
π̂

Emin
π

dEπqπ(Eπ)fπ(Es, Eπ). (106)

Another frequently used notation is to denote the second integral in equ. (103) as

dσs(Es, Ep)

dEs
=

Emax
π̂

Emin
π

dEπ
dσ(Ep, Eπ)

dEπ
fs,π(Es, Eπ) (107)

which gives for the source function of the produced secondary particle

qs(Es) = cnH

∞̂

Emin
p

dEpJp(Ep)
dσs(Es, Ep)

dEs
. (108)
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2.2.1 Gamma-ray Emission from Neutral Pion Decay

As already mentioned above, another source of non-thermal emission from CRs is the interaction of CR
protons with particles of the ambient ISM, where the creation of a neutral pion leads to the production of
two gamma-ray photons. Since only neutral pions are involved in this channel (and no charged ones), the
subscript 0 is being dropped and π represents only neutral pions in this section. Following Stecker (1971),
Dermer (1986a) and Moskalenko and Strong (1998), the production spectrum of neutral pions produced
from hadronic collisions is given by

qπ(Tπ) = cnH

∞̂

Tmin
p (Eπ)

dTpJp(Tp)
dσ(Tπ, Tp)

dTπ
. (109)

To find the proton’s threshold energy for pion production, the relativistic kinematics of the proton-
proton-collision has to be considered. In the center-of-momentum system (CMS, the corresponding quan-
tities are denoted with a prime), the energy of the proton has to be large enough to create the rest mass
of the outgoing pion in the lab system (LS), that is

2γ′pmpc
2 = 2mpc

2 +mπc
2. (110)

Rearranging this expression yields the threshold energy

γ′pmpc
2 = mpc

2

(
1 +

mπ

2mp

)
. (111)

This needs to be transformed into the lab frame, where one of the protons is at rest, by performing a
Lorentz-transformation  γp

βpγp

 =

 γ′p β′pγ
′
p

β′pγ
′
p γ′p

 γ′p

β′pγ
′
p

 . (112)

This yields γp = γ′2p (1 + β′2p ) = γ′2p (1 + 1 − γ′−2
p ) = 2γ′2p − 1 = 2 (1 +mπ/(2mp))

2 − 1 = 1.22 GeV/mpc
2

or in terms of kinetic energy Tmin
p /mpc

2 = γmin
p − 1, which corresponds to the lower limit of the integral

in equ. (109).
To get the gamma-ray emission spectrum, we need to know the energy distribution of the produced

pions during one collision. Following e.g., Stecker (1971), we consider first the decay of a particle with
mass M into two particles ma and mb. Due to the invariant length of the four-momentum

3∑
i=0

(p
(4)
LSi

)2 =

3∑
i=0

(p
(4)
CMSi

)2 (113)

and the conservation of momentum in the CMS p′a = −p′b, we have the relation

E′2 = (E′a + E′b)
2

= (Ea + Eb)
2 − (pac+ pbc)

2

= m2
ac

4 +m2
bc

4 + 2EaEb − 2papbc
2 (114)

where the relativistic energy-momentum relation E2 = m2c4 + p2c2 has been used. Now we use the
invariance of the inner product of the four-momentum and again p′a = −p′b to get[

p(4)
a · (p(4)

a + p
(4)
b )
]

LS
=
[
p(4)
a ·

(
p(4)
a + p

(4)
b

)]
CMS

Ea(Ea + Eb)− pac(pac+ pbc) = E′a(E′a + E′b),

m2
ac

4 + EaEb − papbc2 = E′aE
′. (115)
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This can be used in equ. (114) to obtain an expression for the CMS energy of the produced particles
a and b

E′a,b =
E′2 +m2

a,bc
4 −m2

b,ac
4

2E′
(116)

that depends only on the masses, as can be seen when noticing that the total energy in the CMS is
E′ = Mc2. Now we can use a Lorentz-transformation to the lab system where the energy of the decaying
particle is EM = γMc2. Since only the projection of p′a,b onto the boost axis, which is the direction of
motion of the particle with mass M , forming an angle θ′ with the direction of motion of the outgoing
particle, is transformed. Hence, we have

Ea,b = γ(E′a,b + p′cβ cos θ′)

=
EM
Mc2

(
M2 +m2

a,b −m2
b,a

2Mc2
c4 + p′a,bcβ cos θ′

)
. (117)

Introducing η = (M2 +m2
a,b −m2

b,a)/(2M2) and κ = p′/(Mc) simplifies this to

E(θ′) = EM (η + κβ cos θ′). (118)

If we assume that the particle M decays isotropically, the normalized angular distribution function is
f(θ′)dθ′ = dΩ(θ′)/(4π) = 1/2 sin θ′dθ′. This means, that the emission of a particle in the CMS is equally
probable in all directions. From equ. (118) we get

dE(θ′)

dθ′
= −EMκβ sin θ′, (119)

which we can then use to get the energy distribution function

f(E)dE = f(θ′)

∣∣∣∣dθ′dE

∣∣∣∣ dE =
1

2κβEM
dE. (120)

This is a constant function normalized to unity and ranges from Emin = EM (η−κβ) to Emax = EM (η+κβ)
as can be checked by performing an integration from Emin to Emax.

We can now apply this formalism to the case of a neutral pion decaying into 2 gamma-ray photons,
π0 → 2γ. The daughter particles have no rest mass, i.e. η = 1/2 and p′a,bc = E′a,b = 1

2Mc2, such that
κ = 1/2. This simplifies equ. (118), so that the parent particle is now the pion and the daughter particles
are the two gamma-ray photons:

Eγ(θ′) =
Eπ
2

(1 + βπ cos θ′), (121)

and consequently, the Green’s function for neutral pion decay is

fγ,π(Eγ |Eπ) =
1

βEπ
=

1√
1− mπc2

E2
π
Eπ

=
1√

E2
π −m2

πc
4
. (122)

From this expression we can calculate the resulting gamma-ray spectrum with

qγ(Eγ) = 2

Eπ,maxˆ

Eπ,min

dEπ
qπ(Eπ)√

E2
π − (mπc2)2

, (123)

where the factor of 2 accounts for the decay of one neutral pion into two gamma-rays. The limits of the
integration Eπ,min/max(Eγ) are the minimum/maximum energies that are needed to produce a photon of
energy Eγ . For highly relativistic particles, i.e., β → 1 , we can further simplify equ. (121) using the
general relation of the cosine, cos2(x) = 1/2(1 + cos(2x)), to get
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Eγ(θ′) = Eπ cos2(θ′/2). (124)

Since min(cos2 x) = 0, we can easily see that

Eπmax(Eγ) =
Eγ

cos2(θ′/2)
→∞. (125)

The minimum energy for the production of a photon with energy Eγ can be deduced from considering
the extreme case, where the photons are emitted in the direction of motion, i.e. θ′ = 0 or π/2. Energy
conservation gives Eπ,min = Eγθ′=0

+Eγθ′=π/2 , where Eγθ′=0
= 1

2Eπ(1 + βπ) and Eγθ′=π/2 = 1
2Eπ(1− βπ).

The invariant mass is obtained by multiplying both expressions together, which yields

(Eγθ′=0
)(Eγθ′=π/2) =

1

4
E2
π(1− β2

π) =
1

4

m2
πc

4

1− β2
π

(1− β2
π) =

1

4
m2
πc

4 (126)

so that we are able to express Eγθ′=π/2 in terms of Eγθ′=0
and thus get

Eπmin=Eγθ′=0
+

m2
πc

4

4Eγθ′=0

. (127)

This expression yields the energy needed to produce the maximal possible energy a photon Eγ can carry
away. Thus, it is the lower limit of the integration over the pion energies.

To proceed, we need the differential cross-section of pion production in hadronic collisions to compute
F (Eπ) (see equ. 109). Moskalenko and Strong (1998) put together different models at low and high
energies to get a full description of secondary particle production. Their approach is discussed in the
following. It is based on a method developed by Dermer (1986b), that uses two different models in the
low- and high-energy regimes.

From comparison with experimental data of p-p-collisions, Dermer (1986b) writes the differential cross
section as

dσ(Tπ, Tp)

dTπ
= 〈ζσπ(Tp)〉 dN(Tπ, Tp)

dTπ
(128)

with the inclusive cross section of neutral pion production 〈ζσπ(Tp)〉, that takes into account all corre-
sponding channels and is being fitted to the experimental data as

〈ζσπ(Tp)〉 [mbarn] =


0.032η2 + 0.040η6 + 0.047η8,

32.6(pp − 0.8)3.21,

5.4(pp − 0.8)0.81,

32.0 ln(pp) + 48.5p−0.5
p − 59.5,

pthrp ≤ pp ≤ 0.96,

0.96 ≤ pp ≤ 1.27,

1.27 ≤ pp ≤ 8.0,

8.0 ≤ pp,

(129)

where pp has to be given in units of GeV/c. As pointed out in Dermer (1986a), at proton energies near
the threshold, i.e., below kinetic proton energies of Tp < 3 GeV, the model of Stecker (1970) agreed well
with the experimental data at that time. The production of neutral pions is here explained by the decay
of the ∆3/2 isobar that is excited during the p-p-collision. The mass distribution of the outgoing isobars,
that carry momentum either directly forward or directly backward in the CMS, is given by the normalized
Breit-Wigner distribution

B(m∆) = Γ

[
tan−1

(√
s−mpc

2 −m0
∆

Γ

)
− tan−1

(
mpc

2 −mπc
2 −m0

∆c
2

Γ

)]
·
[
(m∆ −m0

∆)2 + Γ2
]−1

.

(130)
Assuming that the isobar decays isotropically into a proton and a neutral pion, the distribution of the
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pions in the lab system is

fπ(Tπ, Tp,m∆) =
1

4mπγ′πβ
′
π{

1

γ+
∆β

+
∆

H[γπ; a+, γ+
∆γ
′
π(1 + β+

∆β
′
π) +

1

γ−∆β
−
∆

H[γπ; a−γ−∆γ
′
π(1 + β−∆β

′
π)]

}
, (131)

where H [x; a, b] = 1 if a ≤ x ≤ b and = 0 otherwise, a± = γ±∆γ
′
π(1 − β±∆β′π) with the Lorentz factors of

the forward and backward moving isobars in the lab system γ±∆ = γcγ
∗
∆(1± βcβ

∗
∆), the Lorentz factor of

the isobar in the CMS is γ∗∆ = (s + m2
∆c

4 −m2
pc

4)/2
√
sm∆c

2 as well as the pion Lorentz factor in the
rest frame of the ∆−isobar is γ′π = (m2

∆ + m2
π −m2

p)/2
√
sm∆mπ and the Lorentz factor of the CMS in

the lab system is γc =
√
s/2mpc

2. The variable s denotes here the square of the total energy in the CMS,
such that

√
s =

[
2mpc

2(Ep +mpc
2)
]1/2.

Using equ. (130) and (131) one can obtain the distribution of pions in this model by integrating over
m∆

dN(Tπ, Tp)

dTπ
=

√
s−mpc2ˆ

mpc2+mπc2

dm∆ ·B(m∆) · fπ(Tπ, Tp,m∆). (132)

Above 7 GeV, Dermer (1986b) proposes the model presented in Stephens and Badhwar (1981), which
is based on scaling arguments, to be the best fit to the experimental data at that time. It makes use of
the Lorentz invariant cross section Eπd3σ/dp3

π for pion production in p-p-collisions that can be inferred
from experimental data at Ep ≥ 13.5 GeV to calculate the differential cross section for the production of
a neutral pion of energy Eπ from a proton with energy Ep as

dσ(Eπ, Ep)

dEπ
= 2πpπ

1ˆ

cosθmax

d cos θ

(
Eπ

d3σ

dp3
π

)
(133)

where, provided −1 ≤ cos θmax ≤ 1,

cos θmax =
1

βcγcpπ

(
γcEπ −

s−m2
Xc

4 +m2
πc

4

2
√
s

)
. (134)

They also showed that a general fit to the accelerator data of the invariant cross section can be written as

Eπ
d3σ

dp3
π

= Af(Ep)(1− x̃)q exp
[
−Bp⊥/(1 + 4m2

pc
4/s)

]
(135)

where x̃ =
√
x∗2‖ + (4/s)(p2

⊥c
2 +m2

πc
4), x∗‖ is the ratio of the parallel component of the pion momentum

in the CMS, that is p∗‖ = p∗π cos θ∗, to the maximum pion momentum

p∗max =

[(
s−m2

Xc
4 −m2

πc
4
)2 − 4m2

πm
2
Xc

8
]0.5

2mπc2
√
s

and
q = (C1 − C2p⊥ + C3p

2
⊥)/
√

1 + 4m2
pc

4/s.

The function f(Ep) = (1 + 23E−2.6
p )(1 − 4m2

pc
4/s)r and the constants in equ. (135) are fitted to the

experimental data to A = 140,B = 5.43, C1 = 6.1, C2 = 3.3 and C3 = 0.6. The transverse pion
momentum p⊥ = p sin θ is an invariant under the transformation from the lab frame to the CMS, but for
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the transformation of the parallel component one needs the relation tan θ∗ = sin θ/ [γc (cos θ − βcEπ/pπc)]
.

Between 3 and 7 GeV, a linear interpolation between the isobaric model and the scaling model is used
by Dermer (1986a) and thus also in Moskalenko and Strong (1998), who published a numerical code for
Galactic Cosmic Ray Propagation (GALPROP), where they model CR transport and also their emission
products, including gamma-ray emission from neutral pion decay.

Besides the approach in GALPROP described above, Pfrommer and Enßlin (2004) derived an ana-
lytical expression for the gamma-ray source function. They aimed for connecting the high energy limits
for the gamma-ray source function to the detailed physics near the threshold of neutral pion production
that have been modeled with the COSMOCR code (Miniati 2001), that is based on the isobaric model
explained above and also takes into account the contribution of kaon decay modes to the neutral pion
production. The resulting analytical formula is given by

qγ ' σppcnNξ
2−aγCp

4

3aγ

(
mπ

mp

)−aγ [( 2Eγ
mπc2

)δγ
+

(
2Eγ
mπc2

)−δγ]
(136)

where it is assumed that the proton momentum distribution is normalized to mpc. The asymptotic slope
of the gamma-ray spectrum aγ is the same as the spectral index of the proton population in the scaling
model, that has also been adopted by Dermer (1986b). Furthermore, the parameter δγ and the total
effective cross section σpp have been modeled by Pfrommer and Enßlin (2004) as

δγ = 0.14a−1.6
γ + 0.44 (137)

and
σpp = 32× (0.96 + exp(4.4− 2.4aγ) mbarn. (138)

Additionally, there exist nowadays several codes of simulations of pp-interactions that combine exper-
imental data from particle accelerators with phenomenological models of pp-interactions, such as Pythia,
SIBYLL, QGSJET and Geant4. Nevertheless, it is still useful to have analytical expressions that fit their
simulations within a few percent accuracy to reduce the calculation time as well as to get a better under-
standing of the underlying physical processes and the impact of specific spectral features of cosmic rays
on the resulting radiation. Therefore, there have been made several parametrisations based on simulation
codes to describe the cross sections for secondary particle production in pp-collisions that are valid in
different energy regimes.

As pointed out in Yang et al. (2018), it is specifically important to know the cross section near the
kinematic threshold to be able to determine the pion decay bump accurately. Thus, they focused on proton
energies below 10 GeV and used the hadronic interaction model from the Geant4 Toolkit to parametrize
the differential cross section for pion production as

dσπ
dx

= σπ × f(x, Tp) (139)

where x = Tπ/T
max
π and σπ is the total cross section of pion production, for charged and neutral pions

respectively. They give a parametrization for the normalized pion energy distribution f(x, Tp) and use for
the total cross section σπ the existing experimental data for Tp ≤ 2 GeV. For larger energies, Tp > 2 GeV,
the cross section can be expressed as

σπ = σinel
pp 〈nπ〉 . (140)

Here, the pion average yield is parametrized as 〈nπ〉 = 0.78(w− 2)3/4w−1/4 − 1/2 + ε with w =
√
s/mpc

2

and ε = 0 for π−, 1/3 for π0 and 2/3 for π+ (where we need the charged pions in the next chapter). This
is done by using experimental data from Golokhvastov (2001). The resulting curves of the total cross
sections are shown in Fig. 8, where the red dashed lines show the parametrisations used in Yang et al.
(2018) and the points are the experimental data that they refer to. The black dashed lines show the
corresponding parametrisations given by Dermer (1986b), where the formulae for neutral pion production
are given in equ. (129), the channels involving charged pions are discussed in the next chapter. For σπ0 ,
Yang et al. (2018) use the formulas provided by Kafexhiu et al. (2014) in the energy range below 2 GeV.
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Figure 8: Total cross sections of π0 and π± production. Data points are taken from the compilation in
Yang et al. (2018) and the solid lines represent the parametrisations that are going to be used in my code
later on.

We show this model as the solid blue line, which takes into account all neutral pion production channels,
i.e. pp→ ppπ0, pp→ pp2π0 as well as pp→ pπ+π0 and pp→ Dπ+π0. Above 2 GeV, the inelastic cross
section in equ. (140) is used also from Kafexhiu et al. (2014), who give the following expression

σinel
pp (Tp) =

[
30.7− 0.96 log

(
Tp

T th
p

)
+ 0.18 log2

(
Tp

T th
p

)]

×

[
1−

(
Tp

T th
p

)1.9
]3

mbarn (141)

with the threshold proton kinetic energy T th
p = 2mπ0c2 +m2

π0c4/2mpc
2 ≈ 0.2797 GeV.

Since equ. (139) is only given for proton kinetic energies Tp < 10 GeV, another parametrisation needs
to be used at higher energies. On the one hand, Kelner et al. (2006) provide analytical expressions
of energy spectra of secondary particles from proton-proton collisions with Tp > 100 GeV, which are
frequently being used in the literature. Besides secondary π-mesons, electrons and neutrinos, they also
provide a parametrisation for the resulting gamma-ray emission from neutral pion decay as a function of
proton and photon energies, which implies the number of photons in the interval (x, x+ dx) per collision

Fγ(x,Ep) = Bγ
lnx

x

(
1− xβγ

1 + kγxβγ (1− xβγ )

)4

×
[

1

lnx
− 4βγx

βγ

1− xβγ
− 4kγβγx

βγ (1− 2xβγ )

1 + kγxβγ (1− xβγ )

]
(142)

with x = Eγ/Ep and the fitted parameters Bγ = 1.30 + 0.14L+ 0.011L2, βγ = (1.79 + 0.11L+ 0.008L2)−1

and kγ = (0.801 + 0.049L + 0.014L2)−1, where L = ln(Ep/1 TeV). It needs to be convolved with the
proton energy distribution Jp(Ep) and the inelastic cross section of pp-interactions to get the gamma-ray
production rate in the energy interval (Eγ , Eγ + dEγ) to be
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qγ(Eγ) = cnH

∞̂

Eγ

σinel(Ep)Jp(Ep)Fγ

(
Eγ
Ep

, Ep

)
dEp

Ep
. (143)

Note that for the proton energy distribution one needs to use equ. (104) in order to get the gamma-ray
source function in the right units. They fit the numerical data in the SYBILL code to get the inelastic
part of the total cross section of pp-interactions as σinel(Ep)/mb = 34.3+1.88L+0.25L2 and multiply this
by a factor of (1− (Eth/Ep)

4
)2 to better fit experimental data in the low energy regime. For low proton

kinetic energies (Tp < 100GeV) they suggest a δ-functional approach for the production rate of pions to
be able to calculate the gamma-ray spectrum also below their analytical expressions that are only valid
in the high energy regime. They adopt for the production rate of pions the approximation

F̃π(Eπ, Ep) = ñδ
(
Eπ −

κ

ñ
Ekin

)
(144)

where ñ =
´
F̃πdEπ being the number of produced pions and κ is the fraction of kinetic energy of the

proton transferred to gamma rays. This can be used to obtain a simple expression for the pion source
function

Fπ(Eπ) = ñ
cnH

Kπ
σinel

(
mpc

2 +
Eπ
Kπ

)
Jp

(
mpc

2 +
Eπ
Kπ

)
(145)

that can in turn be inserted into equ. (123) to calculate the corresponding gamma-ray emission. The
parameter Kπ = κ/ñ = 0.17 agrees well with numerical Monte Carlo simulations as demonstrated in
Aharonian and Atoyan (2000).

On the other hand, more recently, Kafexhiu et al. (2014) published a parametrisation of the differential
gamma-ray cross section for a wide energy range of proton energies by combining experimental data below
2 GeV and the publicly available codes at higher energies. They give their results in form of a differential
cross section for gamma-ray production

dσγ(Tp, Eγ)

dEγ
= Amax(Tp)F (Tp, Eγ) (146)

which can be used in equ. (108) with s = γ to obtain the gamma-ray source function qγ . They fit
Amax(Tp) = max (dσγ/dEγ) separately from F (Tp, Eγ) since the maximum value only depends on the
proton energy Tp. It is a function of the total π0-production cross section σπ(Ep), for which they also
produce their own fits. In the high-energy regime, they divide the cross section into the inelastic part and
the pion multiplicity, see equ. (140), and use for σpp

inel equ. (141). This fits new experimental data from
Beringer et al. (2012) in the very high energy regime around Tp = 107 GeV better than e.g., the one used
by Kelner et al. (2006). They furthermore provide their own fit to the average pion multiplicity 〈nπ0〉,
that agrees well with the description used by Yang et al. (2018), which refers to data from Golokhvastov
(2001).

Furthermore, Kafexhiu et al. (2014) compare their new results to the ones by Kamae et al. (2006), who
take into account the diffractive interaction of proton-proton collisions additional to the non-diffractive
description by Blattnig et al. (2000) and Stephens and Badhwar (1981), and use the Pythia code for higher
proton energies. Similarly to the approach by Stephens and Badhwar (1981) in equ. (135), Blattnig et al.
(2000) also fit the invariant π0 production differential cross section to experimental data in order to
calculate a gamma-ray spectrum from that. It turns out that the model by Kamae et al. (2006) does not
fit the new approach by Kafexhiu et al. (2014) and violates the symmetry of the gamma-ray spectrum
with respect to Eγ = mπc

2/2.
In my approach, I use the parametrisation by Yang et al. (2018) for Tp < 10 GeV and the model by

Kafexhiu et al. (2014) at larger energies, which is shown by the black solid line in Fig. 9. It agrees well with
the model by Dermer (1986b) near the threshold of pion production, i.e., around mπ0c2/2 ≈ 67.5 MeV,
whereas the latter seems to over-predict the gamma-ray source function at higher energies. The delta-
function approximation by Kelner et al. (2006) for low proton energies can be recognized by the sharp
peak. The analytical approximation by Pfrommer and Enßlin (2004) from equ. (136) agrees well with the

29



Figure 9: Comparison of different models for the gamma-ray source function.

more exact parametrization, except directly at the threshold energy, that corresponds to the peak of the
gamma-ray source function, where it over-predicts the resulting emission.

So far, the ambient gas was assumed to consist of protons only. The effect of relativistic protons
interacting with nuclei heavier than hydrogen was recently studied by Yang et al. (2018), who also gave
the parametrization for the pion production cross section in equ. (139). Whereas at high energies these
interactions can be described by a sequence of binary nucleon-nucleon collisions according to the Glauber’s
multiple scattering theory (Glauber, 1955), there are two additional processes that occur at lower, sub-
relativistic energies, for which still no self-consistent theory exists. On the one hand, intra-nuclear collisions
can lead to the production of pions below the kinematic threshold, which is called sub-threshold pion
production. On the other hand, so called direct photons are emitted, probably due to neutron-proton-
Bremsstrahlung during the early stage of the nuclear interaction. The cross sections for these processes
have been parametrized by Kafexhiu (2016). Yang et al. (2018) used them to analyze the contribution
from heavy nuclei to the gamma-ray emission from hadronic interactions from Galactic CRs with the
interstellar gas and found a very similar spectral shape when including heavy nuclei compared to only
considering pp-interactions, but found an overall higher emissivity by a nuclear enhancement factor of
anucl = 1.8. Therefore, for a chemical composition of CR protons and ISM similar to our Galaxy and
a similar spectral shape of CRs, the multiplication of the gamma-ray emission spectrum by a nuclear
enhancement factor seems to account for all contributions from heavy nuclei quite well.

2.2.2 Secondary Electrons and Positrons

As explained in Section 2.2.1, hadronic collisions lead to the production of charged pions that decay
further into muons and consequently into electrons and positrons, depending on the charge of the created
pion. First, a simple formula for the electron source function shall be derived, as it is useful to compare
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it to the exact results later on. Following Stecker (1971) and Mannheim and Schlickeiser (1994) and
assuming isospin symmetry, which means that the multiplicity of neutral pions is half that of charged
pions, ξπ0 = ξπ±/2, one can derive the pion source function from a simple delta approximation for the
production of pions

dσ(Eπ, Ep)

dEπ
= ξ(Ep)σπpp(Ep)δ(Eπ − 〈Eπ〉)θ(Ep − Eth) (147)

to be

qπ±(Eπ±) =
2

3
cnH

ˆ
dEpNp(Ep)

dσ(Eπ, Ep)

dEπ
(148)

for a proton energy distribution Np(Ep). At high energies, one can furthermore assume a constant pion
multiplicity ξ = 2 as well as a mean pion energy 〈Eπ〉 (Ep) ' KpTp/ξ ' Tp/(2ξ), where the inelasticity Kp

was assumed to be roughly 1/2. In the high-energy limit, the proton power-law distribution in momentum
is also a power-law distribution in energy, since γp = Ep/(mpc

2) =
√

1 + p2
p/(mpc)2 ≈ pp/(mpc) for

pp/mpc � 1 and furthermore, Tp/(mpc
2) = γp − 1 ≈ γp. If the energy distribution is given by a

power-law with spectral index ap and normalization factor Cp, we obtain the expression

qπ± =
4

3
ξ2−apcnHCpσ

π
pp(ap) (2Eπ)

−ap

=
16

3
cnHCpσ

π
pp(ap) (4Eπ)

−ap . (149)

Note that the pion energy needs to be given in units of mpc
2 here, since we have been assuming a

proton power-law distribution in γp . In this approximation, the effective inelastic cross section σπpp was
modeled by Pfrommer and Enßlin (2004), see equ. (138), which also accounts for kaon decay modes.

Transforming the distribution of pions into a distribution of electrons/positrons

qπ±dEπ± = qe±dEe± (150)

and estimating the mean energy of the produced electrons or positrons from the decay channel π± →
e± + 3ν to be 〈Ee±〉 = 〈Eπ±〉 /4 leads to

qe±(Ee±) = qπ± [Eπ±(Ee)]
dEπ±

dEe±
= 4qπ±(4Ee±). (151)

Combining this with equ. (149) gives

qe±(Ee±) =
64

3
cnHCpσ

π
pp(ap)(16Ee±)−ap . (152)

The resulting electron energy distribution can be inferred from the fact that the source function is a
production rate that is acting on a characteristic timescale of pp-interactions

τpp = (ncσpp)−1. (153)

Therefore, we have for instance in the case of a spectral index of ap = 2.1 that the electron distribution
is a factor of 64/3× 16−2.1 ≈ 0.063, which is approximately 1/16, smaller than the initial proton energy
distribution.

Similarly to the previous section for the production rate of gamma-rays from neutral pion decay,
there exist also several parameterizations for a more exact description of the differential cross section of
charged pion production, of the total cross-section as a function of proton energy as well as directly of
the production rate of secondary electrons and positrons.

In the low energy range near the pion production threshold, Tp < 10 GeV, again Yang et al. (2018) give
the most recent description for the differential pion production cross section (equ. 139). The total cross
sections they use for the charged pion production are shown in Fig. 8 with red dashed lines respectively.
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In the case of negative pions, one can clearly see the discontinuity at Tp = 2 GeV, where they change
from a fit to the data for Tp < 2 GeV to a description using the pion average yield by Golokhvastov
(2001) and the total inelastic cross section from Kafexhiu et al. (2014) (see equ. 140 and text below). The
black dashed line shows the approach by Dermer (1986b), that only starts at Tp = 0.95 GeV for σπ− and
an interpolation to lower energies would lead to an underestimation of the cross section compared to the
experimental data. Since Yang et al. (2018) do not give an expression for their fit to the data points below
2 GeV, I fitted the data points up to Tp ≤ 1.1 GeV and used the parametrization by Dermer (1986b) for
higher proton energies, which leads to the magenta solid line in Fig. 8. For the cross section of positive
pion production, I fitted the curve from Fig. 4 in Yang et al. (2018), that is a sum of all channels leading
to the production of positive pions. In this case, it smoothly connects to the description of the cross
section for Tp > 2 GeV from equ. (140).

In order to obtain a resulting production rate of electrons and positrons with equ. (108), we first need
the normalized electron/positron decay energy distribution fπ±(Eπ± , Ee±) to calculate dσe±(Ee± , Ep)/dEe±

from equ. (107). This has been derived by Dermer (1986b), assuming a mono-energetic, unpolarized,
isotropic distribution of pions with Lorentz factor γπ, in whose rest frame muons with a Lorentz factor of
γµ = (m2

µ +m2
π)/2mπmµ and βµ ≈ 0.2714 are created. Defining the functions

g1(y) =
8γ5
µ

βπγπmµ

[(
3− uβ2

µ

) (
1− β2

µ

) y2

2
− 4

9

(
3 + β2

µ − 4uβ2
µ

)
y3

]
,

g2(y) = (6βµγµβπγπmµ)
−1

[
(5 + u) ln y − 6 (u+ 2uβµ + 3) y2

(1 + βµ)2
+

16(u+ 3uβµ + 2)y3

3(1 + βµ)3

]
(154)

with u ≡ ξ/βµ, where ξ = 1 for the production of electrons and −1 for positrons, yields

fπ±(Eπ± , Ee±) =



g1(y2)− g1(y1),

g2(y2)− g2(y−) + g1(y−)− g1(y1),

g+(y2)− g2(y−) + g1(y−)− g1(y1),

g2(y2)− g2(y1),

g2(y+)− g2(y1),

0,

y1 < y2 < y−,

y1 < y− < y2 < y+,

y1 < y− < y+ < y2,

y− < y1 < y2 < y+,

y− < y1 < y+ < y2,

y+ < y2.

(155)

Here, y1 ≡ Ee/γπγµmµc
2(1 + βπ), y2 ≡ Ee/γπγµmµc

2(1 − βπ), y− = (1 − βµ)/2 and y+ = (1 + βµ)/2.
The limits in the integral of equ. (107) are Emax

π = ∞ and Emin
π = mπc

2 if Ee < Emax
e = 1/2mµc

2(1 +
βµ)γµ ≈ 69.9 MeV and Emin

π = 1/2mπc
2(Ee/E

max
e + Emax

e /Ee) if Ee > Emax
e . Thus, equ. (155) together

with the differential cross section in equ. (139), using the corresponding formulas for charged pions, the
electron/positron source function is from equ. (108) and (107) given by

qe±(Ee±) = cnH

∞̂

Emin
p

dEpJp(Ep)

Emax
π̂

Emin
π

dEπ
dσ(Ep, Eπ)

dEπ
fs,π(Es, Eπ). (156)

In the high-energy range of protons, Tp > 100 GeV, Kelner et al. (2006) also provide an analytical
parametrization for the production rate of secondary electrons from the SYBILL code. It is given in
terms of a function Fe(x,Ep) that describes the number of produced electrons per collision in the interval
(x, x+ dx) with x = Ee/Ep and reads as

Fe(x,Ep) = Be
(1 + ke(lnx)2)3

x(1 + 0.3/xβe)
(− ln(x))

5 (157)

with Be = (69.5 + 2.65L+ 0.3L2)−1, βe = (0.201 + 0.062L+ 0.00042L2)−0.25 and ke = (0.279 + 0.141L+
0.0172L2)/(0.3 + (2.3 +L)2), where L = ln(Ep/TeV). Plugging this into equ. (143) instead of Fγ leads to
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the production rate of electrons

qe(Ee) = cnH

∞̂

Ee

σinel(Ep)Jp(Ep)Fe

(
Ee

Ep
, Ep

)
dEp

Ep
. (158)

Here, Jp(Ep) relates to Np(Ep) as pointed out in equ. (104). In my code, I am adopting the model by
Yang et al. (2018) for the low energy range Tp < 10 GeV, the description by Kelner et al. (2006) for
Tp > 100 GeV and a linear interpolation in between.

To transform the resulting production rate, which has units
[
1/erg/cm3/s

]
, into a spectrum of sec-

ondary electrons Ne(γe), the characteristic timescale for inelastic pp-collisions τpp ' (cnσinel
pp )−1 can be

used to obtain
Ne(γe) = τppqe(Ee)dEe/dγe = τppqe(Ee)mec

2. (159)

3 From the Simulation of a Galaxy to its Multi-frequency Spec-
trum

Using the adaptive moving-mesh code AREPO (Springel 2010; Pakmor et al. 2016), Pfrommer et al.
(2017b) performed simulations of isolated galactic disks. These are embedded in dark-matter halos with
masses ranging from M200 = 1010 to 1012M� and thus covering the typical halo sizes from dwarf galaxies
to Milky Way-like galaxies. Following Pfrommer et al. (2017a), CRs are being injected instantaneously in
the surroundings of core-collapse supernovae, such that the energy injection at each time step is modeled
by ∆ECR = ξSNεSNṁ∗∆t, where the CRs are assumed to receive a fraction of ξSN = 0.1 of the released
kinetic energy of a supernova explosion. Here, ṁ∗ is the star formation rate of the mesh cell and εSN =
1049erg M−1

� accounts for one supernova explosion for every 100 M�, which can be obtained by assuming a
Kroupa initial mass function (Kroupa 2001). Subsequently, CRs are advected with the gas and adiabatic
changes in the CR energy as well as non-adiabatic changes are taken into account. The latter include
the two main collisional loss processes of CR protons propagating through the ISM, i.e., losses due to
Coulomb interactions of protons with a plasma and hadronic losses, where protons lose their energy by
the interactions with the thermal ISM as discussed in Section 2.2. As a result of continuous injection
and losses, an equilibrium spectrum is obtained, following Enßlin et al. (2007). The corresponding energy
density of the CRs is given as εCR for every cell and is the starting point for the flow chart in Fig. 10.
Since the balance between injection and losses is only taken into account for CR protons, the injected
electron energy spectrum, which we derive from the proton spectrum using the proton to electron ratio
Kep from equ. (9), has to be developed further, as discussed in the following.

3.1 Steady-State Equation
As the injected CR particles move through the ISM, they can be scattered by irregularities in the magnetic
field such that their motion can be described by a diffusion process, characterized by a coefficient D.
Furthermore, they undergo several energy loss processes, e.g., radiation losses that have been discussed in
Section 2, where at the same time new particles can be injected. To obtain the CR electron’s equilibrium
spectrum, which is a result of the competition between all loss and gain processes, a partial differential
equation for the energy spectrum at each point in the ISM can be derived by an elementary approach,
following Longair (2011). We start with an energy spectrum of particles N(E)dE which are subject to
an energy loss process that can be described by the corresponding energy loss rate as

b(E) = −dE

dt
.

We consider the change in the particle distribution during a time interval ∆t, where at the beginning at
time t the number of particles is N(E)∆E in a unit volume in the energy range E to E + ∆E. In this
interval are different particles after some time t+ ∆t , which before had energies in the range E′ + ∆E′
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Figure 10: Flow-chart for the calculation of a multi-frequency spectrum, starting from a CR energy
density εCR, that gives the normalization of the CR proton spectrum. Assuming a power law index ap
and an electron-to-proton ratio Kep yields together with a characteristic timescale of injection (equ. 168)
the injection spectrum of primary electrons. The proton spectrum also yields the production spectrum
of secondary electrons and positrons, that experience the same cooling processes as the primary electron
spectrum. These are accounted for by solving the diffusion loss equation in the steady-state approximation
(167) taking into account all occurring energy loss processes. From the resulting cooled leptonic spectra
the non-thermal emission processes are computed, which yield together with the gamma-ray emission from
neutral pion decay, directly obtained from the proton spectrum, the multi-frequency emission spectrum.
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at time t. They can get into the interval E + ∆E during time ∆t only by either gaining or losing energy,
i.e.

E′ = E + b(E)∆t (160)

and
E′ + ∆E′ = (E + ∆E) + b(E + ∆E)∆t. (161)

The changed particle distribution is thus given by

N(E, t)∆E + ∆N(E)∆E = N [E + b(E)∆t, t] ∆E′. (162)

A Taylor expansion of the last term for small b(E)∆t yields N [E + b(E)∆t, t] = N(E)+(dN/dE)b(E)∆t.
We can now perform another Taylor expansion for small values of ∆E, which leads to b(E + ∆E) =

b(E) + (db/dE)∆E. Using this in equ. (161) and subtracting the result by (160) gives ∆E′ = ∆E +
(db/dE)∆E∆t. This can be combined with the other Taylor expansion in equ. (162) and yields the
expression

∆N(E)∆E =
dN(E)

dE
b(E)∆E∆t+N(E)

db(E)

dE
∆E∆t, (163)

that can be rewritten as
dN(E)

dt
=

d

dE
[N(E)b(E)] . (164)

Additionally, two other processes should be taken into account: When new particles get injected, a
source term Q(E, t) appears on the right side. Furthermore, the number of particles in the volume can
change due to diffusion with a scalar diffusion coefficient D or due to escape from the system, characterized
by a lifetime τlife. Therefore, the general form of the diffusion-loss equation reads

dN(E)

dt
=

d

dE
[N(E)b(E)] +

N(E)

τlife
+Q(E, t) +D∇2N(E). (165)

This represents the time evolution of an energy spectrum of particles in a unit volume. Since in our case
we are interested in a steady state solution, the left hand side of equ. (165) is assumed to be negligible
Furthermore, in this study, we do not take into account spatial diffusion, such that the last term in equ.
(165) vanishes as well. The remaining steady-state diffusion loss equation can be solved by means of the
Green’s function:

G(E,E′) =
1

b(E)
exp

− Ê

E′

dy
1

τlife(y)b(y)

 . (166)

This is used in order to obtain from an injected source function of CRs, Q(E′), the resulting steady-state
distribution, N(E), after all cooling processes b(E) by performing the integral over the initial energy E′,
which reads

N(E) =

Emaxˆ

E

dE′Q(E′)G(E,E′). (167)

The upper limit Emax is given by the cut-off energy of the injected energy distribution. It is crucial to
notice that the injected spectrum Q(E) is an injection rate, i.e., the numbers of particles being injected per
unit energy and per unit time interval. Therefore, the characteristic timescale for the injection of electrons
has to be considered. In the case of our simulations, electrons are instantaneously injected at remnants
of core-collapse supernovae and are therefore directly connected to star formation. Consequently, the
timescale of injection can be approximated by connecting the star formation rate Ṁ∗ with the gas mass
Mgas of each cell, which yields

τinj =

(
Ṁ∗
Mgas

)−1

. (168)
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3.2 Energy Loss Processes and Timescales
We now specify the different contributions to the energy loss rate b(E), which we need for the calculation
of the steady-state distribution of electrons from solving equ. (165). The following expressions for the
different kinds of energy loss rates are given in units of s−1, since the energies are measured in units
of mec

2. A large amount of energy is lost due to the radiation processes explained above. First, for
synchrotron radiation, we have from equ. (15) the energy loss rate

bsync(E) =
2q4B2γ2β2 sin2 α

3m2
ec

3
=

2

3
r2
0cB

2γ2β2 sinα (169)

for a specific pitch angle α, whereas averaging over all angles leads to equ. (14).
Second, the electrons lose energy through inverse Compton scattering, which can in the simple case of

Thomson scattering be described by equ. (58). In the general case, one needs to perform the integration

bIC(E) =

ˆ
dE1E1

ˆ
dE

dNγ,E
dtdE1dE

, (170)

where for dNγ,E/(dtdE1), in general, the expression in equ. (71) has to be used. For practical purposes,
we are here using the Thomson-limit, i.e.

bIC(E) =
32

9
πr2

0cβ
2γ2uph. (171)

The photon energy density uph is a sum of the CMB and the radiation field of stars, which is not directly
provided by the simulations and has to be derived from the given properties. First, we fix a SFR threshold
SFRthr = 10−8M� in order to define cells with a higher SFR to be actively star forming. Assuming that
the emission of young stars is reradiated in the FIR due to the absorption by dust, the SFR can then be
transformed into a corresponding FIR luminosity by adopting the relation obtained by Kennicutt (1998):

SFR

M� yr−1
= ε 4.5× 10−44 LFIR

erg s−1
= ε 1.7× 10−10LFIR

L�
. (172)

The parameter ε = 0.79 follows from adopting a Chabrier (2003) IMF, see Crain et al. (2010). Hence, we
have the relation

LFIR

L�
= 7.4× 109 SFR

M� yr−1
. (173)

Since the FIR luminosity refers to the integrated luminosity in the wavelength range λ = 8−1000µm, the
corresponding Planck distribution yields a typical temperature of ∼ 100 K. The resulting photon energy
density of a cell is then derived by summing up the flux arriving at each cell at a distance Ri from all
actively star forming cells i, i.e.

uph =
∑
i

LFIR

2πR2
i c
. (174)

If the considered cell itself is a actively star forming one, the distance Ri is simply derived from the cell’s
volume, Ri = 3/(4π)V

1/3
i .

Third, bremsstrahlung losses have to be calculated similarly by

bbrems(E) =

ˆ
dω~ω

dN

dtdω
, (175)

with dN/dtdω = c
∑
nsdσs/dω, where ns and dσs/dω are the number density and differential cross-section

of a species s respectively. In the case of a fully ionized medium, we only have protons and electrons, and
the corresponding differential cross-sections are given in equ. (96), for electron-proton Bremsstrahlung,
and equ. (100), for electron-electron Bremsstrahlung. Following Blumenthal and Gould (1970), this yields
in the case of highly relativistic electrons for a fully ionized medium the expression

36



bbrems(E) = 4αr2
0cnHβγ

[
ln(2E)− 1

3

]
. (176)

Besides the energy loss processes that lead to the emission of photons, Coulomb interactions with the
ambient medium have to be taken into account. They affect mainly the low-energy part of the electron
spectrum. The expression for the energy loss rate has been derived by Gould (1972) and reads

bCoul =
3σTnec

2β

[
ln

(
mec

2β
√
γ − 1

~ωpl

)
− ln (2)

(
β2

2
+

1

γ

)
+

1

2
+

(
γ − 1

4γ

)2
]

(177)

with the plasma-frequency ωpl =
√

4πe2ne/me.
All the discussed energy loss processes for CR electrons occur on characteristic timescales, with

τloss = − E

b(E)
. (178)

These allow us to determine the importance of each energy loss process for a certain energy range.
Furthermore, we have to specify the characteristic timescale of escape losses. We follow Lacki et al.
(2010), who model the CR lifetime as

τ−1
life = τ−1

diff + τ−1
wind, (179)

where the diffusion timescale is approximated by

τdiff(E) = 26Myr

(
E

3 GeV

)−1/2

(180)

and the timescale for losses due to galactic winds by

τwind ≈ 300 kyr. (181)

Since these timescales are in most cases longer than the corresponding timescales of other energy losses,
they do not significantly contribute to the cooling process. This can be deduced from Fig. 11, which shows
two examples of cells with different properties as described in the caption. In one case, the density is a
factor of ∼ 200 higher, hence the energy loss timescale for Coulomb cooling happens faster by the same
factor and thus, the timescale is lower by a factor of ∼ 200. Similarly, since τIC ∝ u−1

ph , an increased photon
energy density of two orders of magnitude in the left panel compared to the right panel leads to a lowering
of the energy loss timescale for IC scattering by ∼ 102. For the synchrotron losses, we have bsynchr ∝ B2,
hence for the corresponding energy loss timescale, we obtain a factor of (622/26)−2 ≈ 23−2 ≈ 2 × 10−3

smaller in comparison to IC cooling. Only in the case of a low magnetic field combined with a low gas
density and photon energy density, the CR lifetime can be lower than the cooling timescales of radiation
processes and Coulomb cooling, and even there it only dominates in a limited energy range that covers
∼ 2 orders of magnitude. Hence, the resulting equilibrium distribution of electrons is in most cases not
significantly changed by diffusive losses and galactic winds. To estimate the qualitative changes of the
energy loss processes of an injected power law distribution of electrons, we write down the steady-state
approximation of equ. (165), neglecting spatial diffusion and escape losses, i.e., τlife →∞ , yielding

d

dE
[N(E)b(E)] = −Q(E, t). (182)

Hence, we obtain for an injected spectrum Q(E) ∝ E−a an equilibrium spectrum with a new spectral
index N(E) ∝ E−p. It is given by p = a + 1 in the case where an energy loss process with b(E) ∝ E2

dominates, hence, the spectrum gets steeper. On the other hand, if energy losses are predominant that
depend only weakly on energy, with b(E) ∝ lnE, the spectral index is flattened to first order as p = a−1.
For b(E) ∝ E, the spectral index remains unchanged.
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Figure 11: Energy loss timescales for two examples of cells with different properties in order to compare
the importance of the cooling processes. In left panel, we have B = 622µG, ne = 606 cm−3 and uph =
10−7.1 erg cm−3, whereas in the right panel B = 26µG, ne = 3 cm−3 and uph = 10−9.2 erg cm−3.

3.3 Steady-State Spectra and Multi-Frequency Emission from Simulated Ga-
laxies

We now apply the procedure explained in the previous section to a selected sample of four simulated
galaxies. In order to get insight into the temporal evolution of galactic properties, we chose two different
snapshots of the simulations. Since the SFR of the simulated galaxies peaks at around 0.1 to 0.2 Gyr,
before it declines exponentially, we chose the snapshots at t = 0.1 Gyr and 1 Gyr in order to compare
a starburst to a quiescent phase. Furthermore, we are also interested in comparing the properties of a
dwarf galaxy to a Milky-Way like galaxy and hence analyze the two different times for a galaxy with a
halo mass of M200 = 1010M� as well as another one with M200 = 1012M�. Thus, we have four different
simulations to undergo the procedure depicted in the flow-chart in Fig. 10, where we aim to calculate
the CR electron equilibrium spectra and the resulting non-thermal multi-frequency emission. As we will
point out later on, there is an important caveat here to keep in mind. Whereas the CR energy density
increases quickly as the first stars are forming and after 0.1 Gyr it is in equilibrium with the thermal
energy density, the magnetic field energy density grows slower, particularly in smaller galaxies (Pfrommer
et al. 2017a). Hence, the magnetic dynamo has not saturated yet in the dwarf-galaxy in both chosen
evolutionary stages and in the Milky-Way like galaxy in its starburst phase at t = 0.1 Gyr. Moreover,
to limit the calculation time, in this study the simulations with ∼ 106 initial gas cells within the virial
radius have been used, therefore the results are only preliminary and have to be improved in the future,
where we plan to apply the procedure to simulations with 10 times more cells and hence a significantly
better resolution. Furthermore, the following input parameters have been fixed to perform a first test of
the code and will be further examined in upcoming studies as well.

We adopt for the CR proton distribution a power-law for 64 momentum bins ranging from pp/(mpc) =
10−0.3 to 106 with a spectral index ap = 2.1 and a low-momentum cut-off q = 0.5, as well as an electron-
to-proton ratio of Kep = 10−3. From the CR energy density εCR we can thus deduce the initial electron
energy distribution. Taking into account the distribution of CRs in Fig. 13, we select cells with εCR >
10−14 erg cm−3 and define them to be actively star-forming, if SFR > 10−8M� yr−1. The determination
of the photon radiation field from the SFR (see equ. 174) is robust to changes of the chosen SFR threshold.
Using the given magnetic field, gas density and the calculated photon energy density, we compute the
steady-state spectrum of the primary electron population in each cell from equ. (167). On the other hand,
from the CR proton spectrum, we obtain the spectrum of secondary electrons and positrons, which also
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Figure 12: Total CR primary and secondary leptonic distributions before cooling and the steady-state
spectra after cooling for two different halo masses. Additionally, the proton spectrum is shown, which
coincides with the secondary electron spectrum if it is multiplied by 1/16, as estimated by equ. (152).
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undergo the same cooling processes as the primary electrons. The summed up distributions of primary
electrons as well as of secondary electrons and positrons for the two types of galaxies at different epochs
of their evolution is shown in Fig. 12, before and after cooling, respectively. We can clearly identify the
change of the spectral slope as we expect it from the discussion of the energy loss processes of electrons
and their corresponding timescales in Section 3.2. Above Lorentz factors of ∼ 103, the IC losses dominate
the cooling of the electrons, since the timescale τIC is the shortest in this regime (see Fig. 11). The
dependence of the energy loss timescale on energy, bIC ∝ E2, leads in the steady-state approximation (see
equ. 182) to a spectral index which is steeper by 1 compared to the injected electron spectrum. For small
electron momenta, the Coulomb losses, that only weakly depend on energy, are the predominant cooling
process. Hence, the spectral index is increases by 1, flattening the spectrum in this regime.

The simple approximation of the secondary electron source function from a power-law distribution
of protons is shown in Fig. 12, where the total proton spectrum has been divided by 16, which follows
from equ. (152) with ap = 2.1. This reproduces very well the exact calculation of the secondary elec-
tron/positron spectrum in a wide energy range. It only deviates in the low energy regime, where the more
complex physical processes at the threshold of pion production have to be taken into account. Further-
more, we can clearly identify the excess of secondary positrons in comparison to secondary electrons near
the threshold of pion production, which we expect from the difference in the cross-sections at low proton
energies (see Fig. 8), since the isospin symmetry does not hold here.

The obtained steady-state spectra of primary electrons and secondary electrons/positrons as well as the
proton spectrum are used as an input to my code to calculate the non-thermal radiation processes. Hence,
we obtain a spatially resolved multi-frequency emission spectrum for our simulated galaxies that ranges
from radio wavelengths, starting from 106 Hz, to the very-high gamma-ray regime, up to ∼ 400 TeV. We
compute the emission of the primary electrons separately from the secondary leptons, in order to compare
the different contributions to the overall spectrum and luminosities.

4 Results and Discussion
From the steady-state spectra of the primary and secondary electrons and positrons, we obtain the multi-
frequency emission of the simulated galaxies: The emission maps of the leptonic radiation processes are
shown in Fig. 15, 16, 18 and 20 for the different halo masses at the two time steps, respectively, separating
primary from secondary emission. Furthermore, we show the maps of gamma-ray emission from hadronic
interactions in Fig. 21. The maps show the emission projected along the line of sight, in a face-on and
an edge-on view, respectively, by calculating S(n) =

´
νjν(r,n)dr for a unit vector n perpendicular to

the line of sight. For the synchrotron emission, the emission is shown at ν = 1.4 GHz and we take into
account, that only the perpendicular component of the magnetic field contributes to this process. Hence,
we calculate the pitch angle for each cell and the corresponding synchrotron emission as viewed by an
observer face-on and edge-on. For all other processes, that occur mainly in the gamma-ray regime, the
emission is shown at ν = 10 GeV/h. In Fig. 22, the emissivities of all cells have been integrated over
the total volume to show the overall emission spectrum for each galaxy. The contribution of the primary
component of each leptonic radiation process does not contribute significantly to the total emission,
since it is around 2 orders of magnitudes below the corresponding secondary component. This can be
already expected from Fig. 12, where we compare the cooled secondary momentum distributions with the
primary ones. We notice, that any conclusion about the comparison of primary to secondary emission is
only preliminary. We are limited in our calculation of the steady-state spectra of primary electrons to the
cells where SFR 6= 0, since we neglect spatial diffusion and advection of CRs here and use equ. (168) for
the typical timescale of the injection rate. This will be further improved in the future (Winner et al, in
prep.).

Furthermore, the total emission spectra show the temporal evolution of the non-thermal emission. The
radio spectra, arising from synchrotron emission (left panels in Fig. 22) show a strong increase over time
from t = 0.1 to t = 1 Gyr. This is due to the growth of the magnetic field, whose exact impact on the
synchrotron emission is discussed in more detail later on in this section. In contrast to that, the total
emission spectra in the X-ray to gamma-ray regime (right panels in Fig. 22) hardly change over time.

40



Figure 13: Normalized histograms of the CR energy density εCR (upper panels) and the SFR (lower
panels) of the mesh cells for the four analyzed galaxies with different halo masses at different time steps.
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Figure 14: Properties of the simulated galaxies withM200 = 1010M� (upper panels) andM200 = 1012M�
(lower panels), both at time t = 0.1 Gyr: We show the projected gas surface density Σ and star formation
rate surface density Σ̇SFR, as well as a slice of the CR energy density εCR.
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Figure 15: Non-thermal emission from the galaxy with M200 = 1010M� at t = 0.1 Gyr, resulting from
primary electrons (upper panels) and secondary electrons and positrons (lower panels): The IC (left
panels) and bremsstrahlung emission (right panels) are shown at hν ≈ 10 GeV, respectively. The maps
are projected along the line of sight and show a face-on view (upper part of each figure) and an edge-on
view (lower part).
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Figure 16: We show the same radiation processes as described in Fig. 15, but for M200 = 1012M� at
t = 0.1 Gyr.
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Figure 17: Properties of the simulated galaxy with M200 = 1010M� at time t = 1 Gyr: We show
the projected gas surface density Σ and star formation rate surface density Σ̇SFR, a slice of the CR
energy density εCR, the magnetic field, the effective magnetic field for the stellar radiation energy density
B2
u∗ = 8πu∗ and their ratio.
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Figure 18: Non-thermal emission from the galaxy with M200 = 1010M� at t = 1 Gyr, resulting from
primary electrons (upper panels) and secondary electrons and positrons (lower panels): The Synchrotron
emission (left panels) is shown at a frequency ν = 1.4 GHz, whereas the IC (middle panels) and
bremsstrahlung emission (right panels) are shown at hν ≈ 10 GeV, respectively. The maps are pro-
jected along the line of sight and show a face-on view (upper part of each figure) and an edge-on view
(lower part)
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Figure 19: Same as Fig. 17, but for a galaxy with M200 = 1012M� at time t = 1 Gyr.
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Figure 20: We show the same radiation processes as described in Fig. 18, but for M200 = 1012M� at
t = 1 Gyr.
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Figure 21: Gamma-ray emission maps from neutral pion decay for all four galaxy simulations at hν =
10 GeV.
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Figure 22: Total emission spectra integrated over the total volume of the galaxies in the radio (left panels)
and the gamma-ray regime (right panels) for the dwarf galaxy (upper panels) and the Milky-Way like
galaxy (lower panels). The spectra of the galaxies embedded in a halo of masses M200 = 1010M� and
1012M� are shown in the upper and lower two panels, respectively. The spectrum is shown at t = 0.1 Gyr
(dashed lines) and t = 1 Gyr (solid lines).
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Solely the bremsstrahlung, gamma-ray emission from neutral pion decay and IC emission is decreased
by factors of 2-10 in the case of the Milky Way-like galaxy. This is ascribed in the first to cases to the
decrease in the mean density of the galaxy as it evolves over time. The IC emission is determined by the
stellar radiation field and thus the decreasing IC flux is a consequence of the decreasing star-formation.
We can already predict from the overall spectra that the IC emission will make a significant contribution
to the gamma-ray luminosities, that we determine in the following.

We now reconcile our results with an analytical approach introduced by Pfrommer et al. (2017b)
and further compare the calculated emission from the different types of galaxies to an observationally
motivated relation between gamma-ray luminosity and star-formation rate. The latter can be further
transformed into an FIR luminosity with equ. (173), since the UV radiation from young massive stars
in star-forming galaxies is assumed to be absorbed by dust and reradiated in the FIR. Eventually, core-
collapse SN explosions at the end of the life of a massive star lead to the acceleration of CRs. The hadronic
interactions of CR protons and the interactions of CR electrons with the ambient medium and radiation
fields lead to gamma-ray emission via neutral-pion decay as well as IC and Bremsstrahlung emission as
explained above. Therefore, the gamma-ray radiation needs to be connected to the SFR and thus the FIR
luminosity of a star-forming galaxy. Ackermann et al. (2012) and Rojas-Bravo and Araya (2016) recently
observed the gamma-ray emission of star-forming galaxies with the Fermi telescope and found a tight
linear correlation with the FIR luminosity, which Rojas-Bravo and Araya (2016) fit with the following
expression:

log

(
L0.1−100 GeV

erg s−1

)
= (1.12± 0.08) log

(
L8−1000µm

L�

)
+ (27.9± 0.8). (183)

This relation is also reproduced by Pfrommer et al. (2017b), who performed the galaxy-formation
simulations that have been used in this work. They used an analytical approach introduced by Pfrommer
et al. (2008) to calculate the equilibrium spectrum of secondary electrons from a given CR proton energy
distribution with a power-law spectral index of a. They include cooling by IC from CMB photons and
synchrotron cooling and yield the expression

Ne(p) =
162−aeσppnNCpmec

2

(ae − 2)σT (εB + εph)

(
mp

me

)ae−2

p−ae

where the slope of the electron spectrum is steeper as the injected proton spectrum by 1, i.e., ae = ap+ 1,
due to synchrotron and IC cooling. The magnetic energy density is denoted by εB = B2/(8π) and the
photon energy density is εph. Based on that, they derive analytical expressions for the non-thermal
radiation processes. Most importantly, the dependencies of the synchrotron and IC emissivities on the
magnetic field and the photon energy density are

jsynchr ∝
B(ae+1)/2

εB + εph

and
jIC ∝

1

εB + εph
,

which is illustrated in their Fig. (3). This implies, that for low magnetic field energy densities εB � εph,
we have for a spectral index of a = 2.1 and thus ae = 3.1, that

jsynchr ∝ B2.05

and
jIC ≈ const.

On the other hand, we have for the case of a large magnetic field εB � εph, that the emissivities scale as

jsynchr ∝ B0.05 ≈ const.
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and
jIC ∝ B−2.

Unlike Pfrommer et al. (2017b), I include as seed photons for IC scattering in addition to CMB photons
also the photon radiation field from the stellar component, reradiated in the FIR, i.e., εph = uCMB + u∗,
see equ. (174). Consequently, much higher magnetic fields are needed, in order to reach the regime where
the synchrotron cooling dominates the IC and overcomes the IC emissivity. This is rarely the case in
the simulations analyzed here. In Fig. 17 and 19 the ratio of the magnetic field to the effective magnetic
field of the stellar radiation field, where B2

u∗ = 8πu∗, is shown in the lower right panel, respectively. We
only have B ∼ Bu∗ at the time step t = 1 Gyr in the very central region of the Milky-Way like galaxy
and marginally occurring in the dwarf galaxy, otherwise Bu∗ � B. This means that we are mostly in
the case where IC cooling dominates synchrotron cooling and the addition of the stellar radiation field
as seed photons for IC scattering has a significant effect on the cooling of the electron spectrum. Hence,
we can verify the increase in the synchrotron emission over time depicted in the left panels of Fig. (22).
The magnetic fields of the galactic discs embedded in the low- and high-mass halos are amplified by a
factor of 2.8 × 102 and 3.6 × 102 , respectively (see Table 1). Since we are mainly in the regime, where
Bu∗ � B and thus jsynchr ∝ B2.05, we obtain an increase in the synchrotron emissivities by a factor of
(2.8× 102)2.05 ≈ 105 and (3.6× 102)2.05 ≈ 2× 105 respectively, which agrees well with the obtained total
spectra.

Nevertheless, there is a crucial point to notice here. First, galactic magnetic fields are believed to be
amplified during their assembly phase due to the dynamo effect. Since the growth phase of the magnetic
field happens at high redshift, it is not relevant for present day galaxies, which are already in the saturated
regime. This was shown by Bernet et al. (2008), who found that the magnetic field strengths of galaxies at
a redshift of z ≈ 1.3 are comparable to those observed in the local Universe. Thus, low-redshift galaxies
that we observe today are in the phase where the dynamo has already saturated. As pointed out in
Pfrommer et al. (2017a), the magnetic field strength in the simulation grows exponentially during the
initial phase. Additionally, they show (see their right panel in Fig. 4), that the time for the magnetic
field dynamo to saturate increases with smaller halo masses. Whereas the magnetic field of the Milky
Way-like galaxy reaches this state already after 0.3 Gyr, it takes the dwarf galaxy at least a factor of 10
longer (Pfrommer et al, 2018 in prep.). Consequently, at the evolutionary state of the simulated galaxies
that we analyze here, we have not reached this saturated regime yet, except for the Milky-Way like galaxy
at t = 1 Gyr. But in that case, the saturated state still might have only been reached in the central
region and not yet in the outer parts of the galactic disc, since the dynamo saturates inside out. This will
be improved by using the higher resolution simulations with ∼ 107 initial cells, that have been used by
Pfrommer et al. (2017b), instead of ∼ 106. Comparing their maps for the magnetic field of the Milky-Way
like galaxy suggests that the low resolution dynamo saturates slower, such that the magnetic field strength
is diminished in the case of less simulated cells. In fact, the total magnetic fields differ by a factor of 2
to 10. Consequently, by analyzing the galaxies at later times and with higher resolution, there might be
more regions with B ? Bu∗ . There, the synchrotron cooling becomes more important again, depending
on the photon radiation field. Hence, including the stellar radiation field will be a next step to improve
the description of the cooling processes, which in turn significantly influence the non-thermal leptonic
emission.

Despite the fact that we do not use the same simulations, we want to compare the results obtained
here with the analytical approach from Pfrommer et al. (2017a). Thus, we apply their formalism to the
exact same simulations used here and compare the results. From the source function of the radiation
processes, the total luminosity, in erg s−1, in a certain energy range is obtained by integration over the
total volume of the galaxy:

Li(E1, E2) =

ˆ

V

E2ˆ

E1

qi(E)EdEd3x. (184)

The index i corresponds to the radiation processes that we are analyzing. For the calculation of the
gamma-ray luminosity in the Fermi-band, we have E1 = 0.1 GeV and E2 = 100 GeV. In this energy
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range, the dominating radiation processes are IC emission and gamma-ray emission from neutral pion
decay (see Fig. 22). Furthermore, the radio luminosity, typically in units of erg s−1 Hz−1, is defined as

L1.4 GHz =

ˆ

V

j1.4 GHzd3x.

We calculate the gamma-ray luminosity in the Fermi-band and use the total SFR of the galaxies to
obtain the corresponding FIR luminosity with equ. (173). These two quantities are correlated in Fig.
(23), which has been taken from Pfrommer et al. (2017b). It shows their results from the simulated
galaxies with ∼ 107 cells, including different models of CR transport (light and dark blue symbols). They
are consistent with the observations with the Fermi-LAT (Rojas-Bravo and Araya 2016), that include
detections (filled symbols) and upper limits (open red symbols) for star-forming galaxies with and without
AGN, respectively. In particular, the detections without AGNs (black filled circles) follow the best fit
(orange line). Over-plotted are the gamma-ray and FIR luminosities of my galaxy sample (magenta and
purple symbols), obtained from the calculation of the gamma-ray emission with my code. This is a sum
of the IC emission and the gamma-ray emission from neutral pion decay.

For comparison with the simple analytical model for the gamma-ray source function by Pfrommer
et al. (2017b), the black open symbols represent the gamma-ray luminosities, which have been obtained
by applying their formalism to the exact same simulations I used, hence with the less simulated cells. Their
approach includes the analytical approximation of the gamma-ray source function from neutral pion decay
obtained by Pfrommer and Enßlin (2004), see equ. (136). For consistency, also the IC emission due to the
CMB has been added, even though this does not make a significant contribution. The lower gamma-ray
yield of the dwarf galaxy at t = 0.1 Gyr compared to the best fit relation obtained by Pfrommer et al.
(2017b) is likely due to the lower numerical resolution of the simulations, that we apply their and my
formalism to.

My approach uses a more exact description of the hadronic interactions of CR protons with the
ambient ISM, which deviates from the analytical model especially at low energies near the threshold
of neutral pion production (see Fig. 9), where the analytical approximation over-predicts the emission.
Hence, my approach yields a decreased gamma-ray luminosity. Note, that this effect is diminished,
since the contribution of hadronic interactions from higher metallicity CRs additionally to interactions
from protons with the ISM have been included here, in contrast to Pfrommer et al. (2017b), who only
accounted for heavier nuclei in the ISM and not in the CRs themselves. As discussed in section 2.2.1, a
nuclear enhancement factor of 1.8 accounts for both effects for Milky Way-like abundances (Yang et al.
2018). The number density of target nucleons in the ISM is defined as nN = nH + 4nHe, with the number
density of hydrogen nH = XH%/mp, the helium density nHe = ((1−XH)/4)%/mp and the mass fraction of
hydrogen XH = 0.76. This yields nN = %/mp. Hence, when we use nN as the target density of nucleons,
we only need another factor of 1.8XH = 1.37 to account for the interactions of heavier nuclei, such as the
sub-threshold pion production. Consistently, this is very close to the value one obtains from dividing 1.8
by 1.3, where the latter is frequently used in the literature to account for heavier target nucleons in the
ISM, but not in the CR composition.

Another difference in our model compared to the analytical approach is the contribution of IC emission
to the total gamma-ray luminosity. In Pfrommer et al. (2017b), the gamma-ray luminosity from neutral
pion decay dominates over the IC luminosity by a factor of ∼ 5.7 and was hence neglected in the analysis.
In fact, applying their formalism to the simulations used here, we obtain ratios of Lπ0→2γ/LIC = 7.3 to
9.9, wheres my method yields around 3 times lower values, from 1.9 to 2.4 (see Table 1). Consequently,
we also account for the IC luminosity in our calculation of the total gamma-ray luminosity, since it is not
negligible anymore.

Another observationally discovered linear relation is the FIR-radio correlation (see e.g. van der Kruit
1971, 1973; Condon 1992; Bell 2003). Since the FIR luminosity is correlated with the SFR of a galaxy, it
should also be linked to the continuum radio emission of star-forming galaxies, which can be explained as
synchrotron emission from CR electrons. If the radio emission was a perfect tracer for SF, star-forming
galaxies would have to be electron calorimeters, which means that the electrons lose most of their energy
by emitting radiation before they leave the galaxy, first proposed by Voelk (1989). The observations yield

53



Figure 23: The FIR-gamma-ray relation, taken from Pfrommer et al. (2017b), where they show the FIR
and gamma-ray luminosities for their simulated galaxies together with observational data from the Fermi-
LAT (Rojas-Bravo and Araya 2016). The best fit is shown by the orange solid line, which deviates for
low FIR luminosities from the calorimetric relation (green dashed line). The results from my code are
shown with magenta and purple symbols, representing the two time steps that have been analyzed. The
corresponding open black symbols show the results from the analytical results obtained by using the
formalism by Pfrommer et al. (2017b), see text for details.
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M200 t [Gyr] SFR
[
M� yr−1

]
B [µG] L8−1000µm/L� L1.4 GHz,(face;edge)

[
erg s−1 Hz−1

]
1010M� 0.1 0.183 1.77× 102 1.36× 109 3.85× 1019; 3.71× 1019

1010M� 1 0.0854 4.87× 104 6.36× 108 6.02× 1024; 6.38× 1024

1012M� 0.1 35.41 1.48× 103 2.64× 1011 1.68× 1023; 1.66× 1023

1012M� 1 8.82 5.29× 105 6.57× 1010 7.30× 1028; 5.11× 1028

M200 t [Gyr] Lγ
[
erg s−1

]
Lπ0→2γ

[
erg s−1

]
LIC

[
erg s−1

]
Lπ0→2γ/LIC

1010M� 0.1 9.54× 1037 6.26× 1037 3.28× 1037 1.9

1010M� 1 8.36× 1037 5.91× 1037 2.45× 1037 2.4

1012M� 0.1 6.41× 1040 4.46× 1040 1.95× 1040 2.3

1012M� 1 2.31× 1040 1.56× 1040 7.48× 1039 2.1

Table 1: Properties and luminosities of the simulated galaxies.

a correlation that is slightly steeper than a simple calorimetric conversion. It reads

L1.4 GHz

erg s−1 Hz−1
= 2.26× 1028

(
L8−1000µm

1010L�

)1.055

(185)

and is reproduced very well by the simulations in Pfrommer et al. (2018, in prep.). The radio luminosities
obtained in this work (see Table 1) are significantly lower than one would expect from equ. (185), where
the difference decreases at later times, respectively. This arises from the fact that the magnetic field
dynamo in these galaxies has not saturated yet, as discussed above. Since we analyze the galaxies at a
stage where the magnetic field still growths exponentially and is thus much smaller than in more evolved
galaxies observed at low redshift, the radio luminosities arising from synchrotron emission are much lower
as well. Therefore, a further analysis of the simulations at later times is needed in order to compare it to
the observational FIR-radio correlation, which refers to galaxies in the local Universe.

5 Conclusion
In this work I developed a framework to calculate the non-thermal emission from simulated galaxies orig-
inating from CRs. Therefore, all leptonic radiation processes have been elaborated considering a general
momentum distribution of CR electrons in order to obtain their emitted synchrotron, IC and relativis-
tic bremsstrahlung emission. Furthermore, I summarized the literature including the recent progress
on modeling the hadronic interactions of CR protons with the ambient medium and reconciled the two
latest descriptions for the cross section of pion production. This is used to determine the gamma-ray
emission from neutral pion decay and the production of secondary electrons and positrons from an ini-
tial distribution of protons. The resulting code is then applied to magneto-hydrodynamic simulations of
galaxies embedded in two different halo masses at two simulation times, respectively. These include a
self-consistent treatment of CRs, that are injected at remnants of core-collapse SN.

First, we deduce from the CR energy density a proton spectrum, which also yields a primary electron
spectrum assuming a proton-to-electron ratio. This is modified due to several energy loss processes, leading
to an equilibrium spectrum under the assumption of a steady-state and neglecting spatial diffusion and
advection of electrons. On the one hand, this primary spectrum of electrons enables us to calculate the
leptonic emission with my code. On the other hand, the hadronic interactions of the initial distribution
of protons with the ambient ISM leads to gamma-ray emission from neutral pion decay, which can also be
obtained from my framework. Moreover, the code computes the production of secondary electrons and
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positrons. It coincides well with the analytical approximation of the pion source function, that predicts a
simple connection of the secondary electron to the proton spectrum, but yields a more exact description
for low proton energies. This is then taken as another input for the leptonic radiation processes, after it
has been “cooled” by means of the steady-state equation, taking into account the occurring energy losses.
For the calculation of IC energy loss rate and the IC emission, we do not only take the contribution
from seed photons of the CMB into account, but also a second contribution due to the stellar radiation
field. Therefore, we assume that the stellar radiation from young stellar populations is mainly emitted in
the UV, which is absorbed by dust and thus reradiated in the FIR. Hence, we connect the SFR to the
corresponding FIR luminosity and calculate a photon radiation field for each cell as it receives from the
surroundings.

We finally show spatially resolved maps of the radio and gamma-ray emission from four simulated
galaxies as well as the total multi-frequency spectra. They show the time evolution of the radio synchrotron
emission due to the growth of the magnetic field. Moreover, they indicate the minor contribution of the
primary to the secondary leptonic emission. The emission calculated with an analytical approximation for
the secondary electron equilibrium spectrum by Pfrommer et al. (2008) as well as an analytical description
of the corresponding gamma-ray emission (Pfrommer et al. 2017b) seem to be in good agreement with my
approach. But the more exact treatment of the pion production near the threshold leads to a decrease
in the overall gamma-ray luminosity. Additionally, taking into account also the stellar radiation field,
the IC emission seems to make a significant contribution as well. But still, the gamma-ray luminosities
agree with the observationally motivated linear correlation with the FIR luminosity, deduced from the
total SFR. In contrast to that, the radio luminosities are below the observed relation of FIR to radio
luminosity, that holds for star-forming galaxies in the low-redshift universe. This is due to the fact that
the simulations analyzed here are in an early stage of evolution. At that time, the magnetic field is still
in the exponential growth phase, where the dynamo has not saturated yet. Thus, the magnetic fields are
much smaller and hence the synchrotron radiation is much lower as well than in more evolved galaxies
that we observe in the local Universe at low redshift.

We have now developed and tested a useful tool for the post-processing of simulations to generate non-
thermal observables. It will be further optimized to be able to apply it to larger galaxy simulations and
to analyze them at more time steps and halo masses. Furthermore, Winner et al. (2018, in prep.) develop
a framework to follow the CR electron spectra attached to passive tracer particles in AREPO in order
to evolve their spectra with time following the Fokker-Planck equation. This will lead to a much more
realistic description of the CR spectra than the steady-state assumption made in this work. This enables
us to refine the existing one-zone models of galaxies, where the FIR-radio correlation is explained by a
“conspiracy scenario” (Lacki et al. 2010). This requires fine-tuning of several processes in different density
regimes and the predicted spectral slopes of the synchrotron spectra are steeper than observed. Hence,
with our framework we aim to gain more insight into the underlying physics of the observed FIR-radio
and FIR-gamma-ray relations, which enables us to calibrate the strength of CR feedback as a function of
galaxy mass and star formation rate ranging from quiescent galaxies to star-bursting phases.

56



A Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne unerlaubte
fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt
habe. Die selbstständige und eigenständige Anfertigung versichert an Eides statt:

Berlin, den

_________________________________
Unterschrift

B Danksagung
Ich möchte mich herzlich bei Prof. Dr. Christoph Pfrommer dafür bedanken, dass ich meine Masterarbeit
in seiner Arbeitsgruppe am AIP anfertigen durfte. Die regelmäßigen Rücksprachen und der rege Austausch
innerhalb der Gruppe haben mich sehr bereichert. Für die Hilfe bei jeglichen Zwischenfragen geht ein
großes Dankeschön neben Christoph Pfrommer auch an Philipp Girichidis und Georg Winner. Ich freue
mich sehr, meine Arbeit am AIP im Rahmen einer Promotion weiter führen zu dürfen. Außerdem möchte
ich mich bei Prof. Dr. Dieter Breitschwerdt für die erneute Betreuung meiner Masterarbeit bedanken.

References
Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables. Dover Publications, Inc., New York, 1965.

M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, D. Bastieri, K. Bechtol, R. Bellazzini,
B. Berenji, E. D. Bloom, E. Bonamente, A. W. Borgland, A. Bouvier, J. Bregeon, M. Brigida, P. Bruel,
R. Buehler, S. Buson, G. A. Caliandro, R. A. Cameron, P. A. Caraveo, J. M. Casandjian, C. Cecchi,
E. Charles, A. Chekhtman, C. C. Cheung, J. Chiang, A. N. Cillis, S. Ciprini, R. Claus, J. Cohen-Tanugi,
J. Conrad, S. Cutini, F. de Palma, C. D. Dermer, S. W. Digel, E. d. C. e. Silva, P. S. Drell, A. Drlica-
Wagner, C. Favuzzi, S. J. Fegan, P. Fortin, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini,
S. Germani, N. Giglietto, F. Giordano, T. Glanzman, G. Godfrey, I. A. Grenier, S. Guiriec, M. Gustafs-
son, D. Hadasch, M. Hayashida, E. Hays, R. E. Hughes, G. Jóhannesson, A. S. Johnson, T. Kamae,
H. Katagiri, J. Kataoka, J. Knödlseder, M. Kuss, J. Lande, F. Longo, F. Loparco, B. Lott, M. N.
Lovellette, P. Lubrano, G. M. Madejski, P. Martin, M. N. Mazziotta, J. E. McEnery, P. F. Michelson,
T. Mizuno, C. Monte, M. E. Monzani, A. Morselli, I. V. Moskalenko, S. Murgia, S. Nishino, J. P.
Norris, E. Nuss, M. Ohno, T. Ohsugi, A. Okumura, N. Omodei, E. Orlando, M. Ozaki, D. Parent,
M. Persic, M. Pesce-Rollins, V. Petrosian, M. Pierbattista, F. Piron, G. Pivato, T. A. Porter, S. Rainò,
R. Rando, M. Razzano, A. Reimer, O. Reimer, S. Ritz, M. Roth, C. Sbarra, C. Sgrò, E. J. Siskind,
G. Spandre, P. Spinelli, Ł. Stawarz, A. W. Strong, H. Takahashi, T. Tanaka, J. B. Thayer, L. Tibaldo,
M. Tinivella, D. F. Torres, G. Tosti, E. Troja, Y. Uchiyama, J. Vandenbroucke, G. Vianello, V. Vitale,
A. P. Waite, M. Wood, and Z. Yang. GeV Observations of Star-forming Galaxies with the Fermi Large
Area Telescope. ApJ, 755:164, August 2012. doi: 10.1088/0004-637X/755/2/164.

F. A. Aharonian and A. M. Atoyan. Broad-band diffuse gamma ray emission of the galactic disk. A&A,
362:937–952, October 2000.

F. A. Aharonian, S. R. Kelner, and A. Y. Prosekin. Angular, spectral, and time distributions of highest
energy protons and associated secondary gamma rays and neutrinos propagating through extragalactic

57



magnetic and radiation fields. Phys. Rev. D, 82(4):043002, August 2010. doi: 10.1103/PhysRevD.82.
043002.

V. N. Baier, V. S. Fadin, and V. A. Khoze. Photon bremsstrahlung in collision of high-energy electrons.
Soviet Phys. JETP, 24(4):760, Apr 1967.

M. G. Baring, D. C. Ellison, S. P. Reynolds, I. A. Grenier, and P. Goret. Radio to Gamma-Ray Emission
from Shell-Type Supernova Remnants: Predictions from Nonlinear Shock Acceleration Models. ApJ,
513:311–338, March 1999. doi: 10.1086/306829.

R. Beck and G. Golla. Far-infrared and radio continuum emission of nearby galaxies. A&A, 191:L9–L12,
February 1988.

R. Beig, J. Ehlers, U. Frisch, K. Hepp, W. Hillebrandt, D. Imboden, R. L. Jaffe, R. Kippenhahn,
R. Lipowsky, H. v. Lo?hneysen , I. Ojima, H. A. H. A. Weidenmu?ller , J. Wess , and J. Zittartz.
Physics and astrophysics of ultra-high-energy cosmic rays. In Lecture Notes in Physics, volume 576.
Springer, 2001.

A. R. Bell. The acceleration of cosmic rays in shock fronts. I. MNRAS, 182:147–156, January 1978. doi:
10.1093/mnras/182.2.147.

E. F. Bell. Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the
Radio-Infrared Correlation. ApJ, 586:794–813, April 2003. doi: 10.1086/367829.

J. Beringer, J. F. Arguin, and R. M. et al. Barnett. Review of particle physics. Phys. Rev. D, 86:010001,
Jul 2012. doi: 10.1103/PhysRevD.86.010001. URL https://link.aps.org/doi/10.1103/PhysRevD.
86.010001.

M. L. Bernet, F. Miniati, S. J. Lilly, P. P. Kronberg, and M. Dessauges-Zavadsky. Strong magnetic fields
in normal galaxies at high redshift. Nature, 454:302–304, July 2008. doi: 10.1038/nature07105.

H. Bethe and W. Heitler. On the Stopping of Fast Particles and on the Creation of Positive Electrons.
Proceedings of the Royal Society of London Series A, 146:83–112, August 1934. doi: 10.1098/rspa.1934.
0140.

M. D. Bicay and G. Helou. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies.
ApJ, 362:59–73, October 1990. doi: 10.1086/169243.

S. R. Blattnig, S. R. Swaminathan, A. T. Kruger, M. Ngom, and J. W. Norbury. Parametrizations of
inclusive cross sections for pion production in proton-proton collisions. Phys. Rev. D, 62(9):094030,
November 2000. doi: 10.1103/PhysRevD.62.094030.

G. R. Blumenthal and R. J. Gould. Bremsstrahlung, Synchrotron Radiation, and Compton Scattering
of High-Energy Electrons Traversing Dilute Gases. Reviews of Modern Physics, 42:237–271, 1970. doi:
10.1103/RevModPhys.42.237.

D. Breitschwerdt, J. F. McKenzie, and H. J. Voelk. Galactic winds. I - Cosmic ray and wave-driven winds
from the Galaxy. A&A, 245:79–98, May 1991.

G. Chabrier. The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby
Determinations. ApJ, 586:L133–L136, April 2003. doi: 10.1086/374879.

J. J. Condon. Radio emission from normal galaxies. ARA&A, 30:575–611, 1992. doi: 10.1146/annurev.
aa.30.090192.003043.

R. A. Crain, I. G. McCarthy, C. S. Frenk, T. Theuns, and J. Schaye. X-ray coronae in simulations of disc
galaxy formation. MNRAS, 407:1403–1422, September 2010. doi: 10.1111/j.1365-2966.2010.16985.x.

58



C. D. Dermer. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation. A&A,
157:223–229, March 1986a.

C. D. Dermer. Binary collision rates of relativistic thermal plasmas. II - Spectra. ApJ, 307:47–59, August
1986b. doi: 10.1086/164391.

G. Elwert. Verschaerfte berechnung von intensitaet und polarisation im kontinuierlichen roentgenspek-
trum. Annalen der Physik, 426(2):178–208, 1939. doi: 10.1002/andp.19394260206. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19394260206.

T. A. Enßlin, C. Pfrommer, V. Springel, and M. Jubelgas. Cosmic ray physics in calculations of cosmo-
logical structure formation. A&A, 473:41–57, October 2007. doi: 10.1051/0004-6361:20065294.

V. F. Hess. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalis-
che Zeitschrift, 13:1084–1091, November 1912.

ENRICO Fermi. On the origin of the cosmic radiation. Phys. Rev., 75:1169–1174, Apr 1949. doi:
10.1103/PhysRev.75.1169. URL https://link.aps.org/doi/10.1103/PhysRev.75.1169.

T. K. Gaisser. Cosmic rays and particle physics. 1990.

A. I. Golokhvastov. Koba-Nielsen-Olesen Scaling in Isospin-Coupled Reactions. Physics of Atomic Nuclei,
64:1841–1855, October 2001. doi: 10.1134/1.1414933.

R.J. Gould. Energy loss of fast electrons and positrons in a plasma. Physica, 60(1):145 – 154, 1972. ISSN
0031-8914. doi: https://doi.org/10.1016/0031-8914(72)90227-3. URL http://www.sciencedirect.
com/science/article/pii/0031891472902273.

E. Haug. Contribution of electron-electron bremsstrahlung to solar hard X-radiation during flares.
Sol. Phys., 45:453–458, December 1975a. doi: 10.1007/BF00158461.

E. Haug. Bremsstrahlung and pair production in the field of free electrons. Zeitschrift Naturforschung
Teil A, 30:1099–1113, September 1975b. doi: 10.1515/zna-1975-0901.

E. Haug. On the use of nonrelativistic bremsstrahlung cross sections in astrophysics. A&A, 326:417–418,
October 1997.

W. Heitler. Quantum theory of radiation. 1954.

F. C. Jones. Calculated Spectrum of Inverse-Compton-Scattered Photons. Physical Review, 167:1159–
1169, March 1968. doi: 10.1103/PhysRev.167.1159.

E. Kafexhiu. Parametrization of the nucleus-nucleus γ -ray production cross sections below 100
GeV/nucleon: Subthreshold pions and hard photons. Phys. Rev. C, 94(6):064603, December 2016.
doi: 10.1103/PhysRevC.94.064603.

E. Kafexhiu, F. Aharonian, A. M. Taylor, and G. S. Vila. Parametrization of gamma-ray production
cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV
energies. Phys. Rev. D, 90(12):123014, December 2014. doi: 10.1103/PhysRevD.90.123014.

T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi. Parameterization of γ, e+/−, and Neutrino
Spectra Produced by p-p Interaction in Astronomical Environments. ApJ, 647:692–708, August 2006.
doi: 10.1086/505189.

S. R. Kelner, F. A. Aharonian, and V. V. Bugayov. Energy spectra of gamma rays, electrons, and neutrinos
produced at proton-proton interactions in the very high energy regime. Phys. Rev. D, 74(3):034018,
August 2006. doi: 10.1103/PhysRevD.74.034018.

R. C. Kennicutt, Jr. Star Formation in Galaxies Along the Hubble Sequence. ARA&A, 36:189–232, 1998.
doi: 10.1146/annurev.astro.36.1.189.

59



P. Kroupa. On the variation of the initial mass function. MNRAS, 322:231–246, April 2001. doi:
10.1046/j.1365-8711.2001.04022.x.

B. C. Lacki, T. A. Thompson, and E. Quataert. The Physics of the Far-infrared-Radio Correlation. I.
Calorimetry, Conspiracy, and Implications. ApJ, 717:1–28, July 2010. doi: 10.1088/0004-637X/717/1/1.

M. S. Longair. High Energy Astrophysics. February 2011.

K. Mannheim and R. Schlickeiser. Interactions of cosmic ray nuclei. A&A, 286:983–996, June 1994.

F. Miniati. COSMOCR: A numerical code for cosmic ray studies in computational cosmology. Computer
Physics Communications, 141:17–38, November 2001. doi: 10.1016/S0010-4655(01)00293-4.

I. V. Moskalenko and A. W. Strong. Production and Propagation of Cosmic-Ray Positrons and Electrons.
ApJ, 493:694–707, January 1998. doi: 10.1086/305152.

E. J. Murphy, G. Helou, J. D. P. Kenney, L. Armus, and R. Braun. Connecting Far-Infrared and Radio
Morphologies of Disk Galaxies: Cosmic-Ray Electron Diffusion After Star Formation Episodes. ApJ,
678:828–850, May 2008. doi: 10.1086/587123.

R. Pakmor, V. Springel, A. Bauer, P. Mocz, D. J. Munoz, S. T. Ohlmann, K. Schaal, and C. Zhu.
Improving the convergence properties of the moving-mesh code AREPO. MNRAS, 455:1134–1143,
January 2016. doi: 10.1093/mnras/stv2380.

C. Pfrommer and T. A. Enßlin. Constraining the population of cosmic ray protons in cooling flow clusters
with γ-ray and radio observations: Are radio mini-halos of hadronic origin? A&A, 413:17–36, January
2004. doi: 10.1051/0004-6361:20031464.

C. Pfrommer, T. A. Enßlin, and V. Springel. Simulating cosmic rays in clusters of galaxies - II. A unified
scheme for radio haloes and relics with predictions of the γ-ray emission. MNRAS, 385:1211–1241, April
2008. doi: 10.1111/j.1365-2966.2008.12956.x.

C. Pfrommer, R. Pakmor, K. Schaal, C. M. Simpson, and V. Springel. Simulating cosmic ray physics on
a moving mesh. MNRAS, 465:4500–4529, March 2017a. doi: 10.1093/mnras/stw2941.

C. Pfrommer, R. Pakmor, C. M. Simpson, and V. Springel. Simulating Gamma-Ray Emission in Star-
forming Galaxies. ApJ, 847:L13, October 2017b. doi: 10.3847/2041-8213/aa8bb1.

C. Rojas-Bravo and M. Araya. Search for gamma-ray emission from star-forming galaxies with Fermi
LAT. MNRAS, 463:1068–1073, November 2016. doi: 10.1093/mnras/stw2059.

G. B. Rybicki and A. P. Lightman. Radiative Processes in Astrophysics. June 1986.

V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving
mesh. MNRAS, 401:791–851, January 2010. doi: 10.1111/j.1365-2966.2009.15715.x.

F. W. Stecker. The Cosmic γ-Ray Spectrum from Secondary Particle Production in Cosmic-Ray Interac-
tions. Ap&SS, 6:377–389, March 1970. doi: 10.1007/BF00653856.

F. W. Stecker. Cosmic gamma rays. NASA Special Publication, 249, 1971.

S. A. Stephens and G. D. Badhwar. Production spectrum of gamma rays in interstellar space through
neutral pion decay. Ap&SS, 76:213–233, May 1981. doi: 10.1007/BF00651256.

P. C. van der Kruit. Observations of core sources in Seyfert and normal galaxies with the Westerbork
synthesis radio telescope at 1415 MHz. A&A, 15:110–122, November 1971.

P. C. van der Kruit. High-resolution Radio Continuum Observations of Bright Spiral Galaxies at 1415
MHz: A General Discussion. A&A, 29:263, December 1973.

60



H. J. Voelk. The correlation between radio and far-infrared emission for disk galaxies - A calorimeter
theory. A&A, 218:67–70, July 1989.

K. C. Westfold. The Polarization of Synchrotron Radiation. ApJ, 130:241, July 1959. doi: 10.1086/146713.

R.-z. Yang, E. Kafexhiu, and F. Aharonian. On the shape of the gamma-ray spectrum around the “π0-
bump”. ArXiv e-prints, March 2018.

V. Zeković, B. Arbutina, A. Dobardžić, and M. Z. Pavlović. Relativistic Non-Thermal Bremsstrahlung
Radiation. International Journal of Modern Physics A, 28:1350141, November 2013. doi: 10.1142/
S0217751X13501418.

E. G. Zweibel. The microphysics and macrophysics of cosmic rays. Physics of Plasmas, 20(5):055501,
May 2013. doi: 10.1063/1.4807033.

61


