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Abstract

Feedback of the active galactic nucleus (AGN) to the ambient intracluster medium (ICM) leads
to complex structures in the center of a galaxy cluster and is of crucial importance for solving
the cooling-flow problem. Dynamics of AGN-inflated underdense bubbles provide an important
source of heating as they buoyantly rise through the cluster atmosphere. The evolutionary effects
and heating of the ICM thereby critically depend on the bubble morphology. Ideal inviscid
hydrodynamical simulations cannot reproduce the observed coherent morphology, because the
artificial bubbles become unstable to Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz
instability (KHI) and dissolve into the ICM on much shorter time-scales than their observed
lifetimes. Therefore, additional physics have been considered to be important to preserve the
bubble stability, including magnetic fields and viscosity. Since the ICM is a weakly collisional,
magnetized plasma, where the collision mean free path of the ions is much larger than their
Larmor radius, microscopic transport of momentum and heat becomes highly anisotropic. Hence,
we perform Braginskii-magnetohydrodynamic simulations in an isothermal cluster core employing
the moving-mesh code AREPO while applying adaptive mesh refinement. For the first time, we
quantify parallel viscous heating rates of buoyantly rising bubbles to clarify whether viscous
heating can offset radiative cooling and study the significance of Braginskii viscosity on the
bubble dynamics. We show that Braginskii viscosity mainly suppresses RTT and KHI parallel to
the magnetic field lines, while having minor effects on modes perpendicular to the field. We find
that anisotropic viscous dissipation of turbulent motions is not very efficient in heating the ICM
in a volume filling fashion. Since the viscous heating rate is sensitive to pressure anisotropy,
it can be suppressed if microscopic plasma instabilities are triggered, which pin the pressure
anisotropy down to certain limits for marginal stability. Simulating cluster atmospheres with
magnetic fields having 8 = 100 reveals an invariance in bubble evolution in terms of mixing
efficiency and viscous heating rates regardless of whether pressure anisotropy is limited or not.
If so, micro-scale instabilities are rarely triggered effectively resulting in unsuppressed Braginskii
viscosity. If however the magnetic tensions are negligibly weak (8 = 10%) the bubble evolution
is drastically altered depending on whether the pressure anisotropy is bounded within levels of
marginal stability. If so, viscous stresses are highly suppressed by the microinstabilities such that
they can no longer prevent the bubbles from disruption, resembling the inviscid case.



Zusammenfassung

Die Riickkopplung eines aktiven galaktischen Kerns (AGN) zum umgebenen Intracluster-Medium
(ICM) fithrt zu komplexen Strukturen im Zentrum eines Galaxienhaufens und ist von wesentlicher
Bedeutung um das Abkiihlungsfluss -Problem zu 16sen. Die Dynamiken von AGN-aufgebldhten
Blasen geringer Dichte stellen eine wichtige Quelle zur Wérmeentwicklung bereit, wihrend diese
in der Atmosphire des Haufens auftreiben. Dabei hingen die evolutionidren Effekte und das Er-
wirmen des ICMs kritisch von der Gestalt der Blase ab. Ideale, nicht-viskose, hydrodynamische
Simulationen kénnen die beobachtete, einheitliche Form nicht reproduzieren, weil die synthetis-
chen Blasen aufgrund von Rayleigh-Taylor (RTI) und Kelvin-Helmholtz Instabilitdt (KHI) ge-
stort werden und sich bereits innerhalb von Zeitskalen kleiner als ihre beobachtete Lebensdauer
im ICM auflésen. Daher werden zusétzliche physikalische Eigenschaften angenommen, unter an-
derem Magnetfelder und Viskositdt, um die Blasenstabilitdt zu gewédhrleisten. Da das ICM ein
schwach kollisionsgetriebenes, magnetisches Plasma ist, wo die mittlere freie Weglinge zwischen
Ionenkollisionen viel grofer ist als deren Larmorradius, werden der mikroskopische Transport
von Impuls und Wéarme anisotropisch. Darum fiihren wir Braginskii-magnetohydrodynamische
Simulationen in einem isothermischen Clusterkern aus unter Einsatz des dynamischen Meshcodes
AREPO und Anwendung einer adaptiven Meshverfeinerung. Erstmalig quantifizieren wir viskose
Wirmeraten von auftreibenden Blasen um zu kléren, ob viskose Erwérmung das Abkiihlen durch
Strahlung ausgleichen kann und um heraus zu finden, welche Signifikanz Braginskii-Viskositat auf
die Blasendynamiken hat. Wir zeigen, dass Braginskii-Viskositit vorrangig RTI und KHI entlang
der Magnetfeldlinien unterdriickt, jedoch verschwindenden Einfluss auf die Moden senkrecht zum
Feld hat. Wir stellen fest, dass anisotropische, viskose Dissipation von turbulenten Bewegungen
nicht sehr effizient ist, um das ICM in einer volumenfiillenden Weise zu erwérmen. Da die viskose
Wirmerate stark mit der Druckanisotropie korreliert, kann diese unterdriickt werden, sobald mi-
kroskopische Plasmainstabilitdten getriggert werden, welche wiederum die Druckanisotropie auf
bestimmte Grenzen der Randstabilitdt festsetzen. Die simulierten Clusteratmosphéren mit Mag-
netfeldern der Stéirke 5 = 100 zeigen eine Invarianz der Blasenevolution auf beziiglich der Ver-
mischungseffizienz und der viskosen Wérmeraten unabhéngig des Falles, ob die Druckanisotropie
begrenzt gehalten wurde oder nicht. Gesetzt diesen Fall, werden die mikroskopischen Instabi-
litdten nur sehr selten getriggert, was effektiv in eine nicht unterdriickte Braginskii-Viskositét
resultiert. Falls die magnetischen Kriifte allerdings vernachlissigbar schwach sind (8 = 10°),
wird die Blasenentwicklung drastisch verédndert, je nachdem ob die Druckanisotropie innerhalb
der Randstabilitdt begrenzt wurde. Dies vorausgesetzt, werden die viskosen Spannungen stark
unterdriickt und konnen nicht langer verhindern, dass die Blasen zerrissen werden, was wiederum
den nicht-viskosen Fall widerspiegelt.
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7 Chapter 1. Introduction

Chapter 1.

Introduction

Deep images of Chandra and XMM-Newton observations of galaxy clusters have revealed complex
structures in their cores such as cavities in X-ray surface brightness maps (Birzan et al., 2004).
These cavities are inflated by the interaction of powerful radio jets, which are driven by an
accreting super-massive black hole (SMBH) in the central brightest cluster galaxy (BCG), with
the ambient intracluster medium (ICM) (Worrall, 2009). The ICM is a diffuse, hot plasma,
which radiates thermal bremsstrahlung in X-rays (Voit, 2005) on time-scales considerably shorter
than the Hubble time in the very centers of then so-called cool-core clusters (CCs) (Fabian and
Sanders, 2007). Such expected cooling flows are not observed in form of significant levels of
star formation (Peterson and Fabian, 2006). Feedback of the active galactic nucleus (AGN) to
the ICM might be the most promising mechanism for solving the cooling flow problem in CCs
(McNamara and Nulsen, 2012). Dynamics of AGN-inflated underdense, high entropy bubbles
provide an important source of heating as they buoyantly rise through the cluster atmosphere
(Fabian, 2012), because inferred heating rates are capable of balancing radiative cooling of the
ICM (Rafferty et al., 2006). Numerical simulations of AGN feedback have been used in order
to study the underlying physics needed to reproduce the observed evolution of buoyant bubbles
(Soker, 2016; Ehlert et al., 2018). Such bubbles, like the northwest cavity of the Perseus cluster,
remain coherent and avoid being shredded by Rayleigh-Taylor instability (RTI) and Kelvin-
Helmholtz instability (KHI) over the bubble lifetime, < 100 Myr (Fabian et al., 2011). However,
ideal inviscid hydrodynamical simulations cannot reproduce the observed morphology as the
bubbles become unstable to RTT and KHI and dissolve into the ICM on much shorter time-scales
(Scannapieco and Briiggen, 2008; Briiggen and Scannapieco, 2009). Therefore, additional physics
have been considered to be important to preserve the bubble stability, including magnetic fields
(Ruszkowski et al., 2007; Dursi and Pfrommer, 2008), viscosity (Reynolds et al., 2005; Gardini,
2007) or both (Dong and Stone, 2009; Kingsland et al., 2019).

Since the ICM is weakly magnetized (Carilli and Taylor, 2002), a magnetohydrodynamical
(MHD) description of the plasma might be inevitable. Ideal MHD simulations with simplistic field
topologies show that buoyant bubbles can be sufficiently stabilized suppressing fluid instabilities
at the interface if the magnetic field lines are aligned parallel to the bubble surface (O’Neill
et al., 2009; Dong and Stone, 2009). Real cluster atmospheres however likely contain a turbulent
magnetic field (Schekochihin and Cowley, 2007), which enhances mixing of bubble material with
the ambient gas compared to a quiescent ICM. Hence, viscous effects might also be important
for the bubble dynamics, which is also indicated by the low estimates of the Reynolds number
of the intracluster gas, Re ~ 50-100, if assuming the standard Spitzer coefficient of viscosity
(Spitzer, 1962). Although hydrodynamical simulations including viscosity show that viscous
stresses can quench the growth rates of RTT and KHI perturbations and maintain the observed
bubble morphology (Reynolds et al., 2005), these studies suffer from the simplified assumption
that momentum transport in the ICM is isotropic. In fact, the ICM is a weakly collisional,
magnetized plasma, where the collision mean free path of the ions is much larger than their
Larmor radius (Kunz et al., 2012). Thus, microscopic transport of momentum and heat becomes
highly anisotropic as the ions are basically tied to the magnetic field lines and are only scattered
in between at each Coulomb collision. To account for these fundamental property changes, ideal
MHD is extended by anisotropic heat conduction and viscosity to become so-called Braginskii-
MHD (Braginskii, 1965).



So far, there have not been many studies of AGN-inflated buoyant bubbles including the effects
of Braginskii-MHD. Dong and Stone (2009) considered Braginskii viscosity along magnetic field
lines and studied the dynamics and lifetimes of initially static bubbles depending on different
(uniform) field topologies. They find that models using isotropic versus anisotropic viscosity pro-
duce quite different results. The latter only suppresses RTT and KHI parallel to the magnetic field
lines on macroscopic scales, while having minor effects on interchanging modes perpendicular to
the field. Kingsland et al. (2019) studied anisotropic viscosity of self-consistently jet-inflated ca-
vities in a turbulent environment. They find that the evolutionary dynamics drastically depend
on whether the anisotropic viscous dissipation of momenta is suppressed by plasma instabilities
on microscopic scales. Such microinstabilities are triggered where pressure anisotropies caused
by turbulent stresses and concomitant changes in magnetic field strength exceed certain thres-
holds for marginal stability (Schekochihin et al., 2005). If the production of pressure anisotropy
is pinned down to these limits, which is motivated from kinetic theory (Rosin et al., 2011), ef-
fects due to Braginskii viscosity might also be limited and considerably overstimated otherwise
(Schekochihin et al., 2008).

The two previous simulation studies by Dong and Stone (2009) and Kingsland et al. (2019) did
not estimate the parallel viscous heating rates arising from the pressure anisotropy with respect to
the local direction of the magnetic field. As theoretical studies find, viscous heating is assumed
to be comparable with radiative bremsstrahlung cooling in a weakly collisional, magnetized
ICM (Kunz et al., 2011). Furthermore, this heating-cooling balance is thermally stable in a
probably self-regulating manner. Therefore, we study parallel viscous heating as a promising
heating mechanism for quenching cooling flows and preventing cluster core collapse. For the
first time, in this thesis we estimate viscous heating rates for simulations of buoyantly rising
bubbles in a cluster atmosphere. We perform a number of different simulations designed to have
comprehensible initial conditions (ICs) with a controllable set of parameters in order to study
the significance of pressure anisotropy. This allows us to isolate the effects of Braginskii-MHD
in our simulations. Our first set of ICs aims to reproduce the findings of Dong and Stone (2009)
by employing the moving-mesh code AREPO (Springel, 2010) while applying adaptive mesh
refinement (AMR). Thereby, we study both a weak and a strong magnetic field, and whether
pressure anisotropy is limited or unlimited by kinetic instabilities. Our second set of ICs is
identical to the first one, now enhanced by introducing a turbulent magnetic field. This allows
us to advance to more and more sophisticated cluster properties, while studying the impact of
Braginskii viscosity on the bubble dynamics and quantifying whether viscous heating rates can
offset radiative cooling rates.

The structure of this thesis is as follows. In chapter 2 we introduce the basic physics of galaxy
clusters, AGN-inflated bubbles and the weakly collisional ICM and give on overview of AREPO,
the numerical code we have used to perform our simulations. We present our numerical setup
and describe our treatment of viscosity in chapter 3. The subsequent analysis of our simulations
is discussed in chapter 4 including the bubble evolution, the mixing efficiency and estimates of
the viscous heating rate for different ICM parameters. We discuss our results in chapter 5 and
conclude our findings in chapter 6.
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Chapter 2.

Theoretical Background

In this chapter we set the fundamental framework needed in order to be able to understand
the methods used throughout this thesis and to comprehend our obtained results. We start
by describing basic properties of galaxy clusters and segue from the cooling flow problem into
AGN feedback and how AGN-inflated bubbles theoretically contribute to solving the cooling
catastrophe. In the next section we characterize the physics of the plasma in which the bubbles
are inflated into and how anisotropic viscosity enters the Braginskii-MHD equations describing
this ICM. The last section gives an overview on the numerical code AREPO we have used to

compute our set of simulations presented later on.

2.1. Galaxy Clusters

2.1.1. Properties in the optical window

Galaxy clusters are the largest gravitationally bound objects in the Universe. They extend out
to virial radii of Rggg ~ 1-3Mpc (Peterson and Fabian, 2006), where Rgyy is the radius at
which the mean cluster density equals 200 times the critical density of the universe peit. They
can have number of member galaxies anywhere from 50 (poor cluster) to several thousand (rich
cluster). Cluster galaxies are collisionless tracers of the gravitational potential and its dynamical
state. They have to a good approximation a Gaussian velocity distribution with dispersions
around o, ~ 1000 km/s for a rich cluster (Carroll and Ostlie, 2014). For a relaxed cluster, using
Maxwell’s equipartition theorem, the galaxy dispersion along the line of sight can be related to
the temperature of the cluster as T' o< o2 (Voit, 2005).

Approximating the dynamical time-scale of clusters yields tqyn ~ Rg/oy = 1Gyr < tg,
where Rg = GMCl/ag ~ 1Mpc is the gravitational radius and ¢ty = 1/Hj is the Hubble time
(Schneider, 2015). The dynamical time-scale is defined as the amount of time it takes for a
typical galaxy to traverse the cluster along its diameter. Since tqyy is much shorter than the age
of the universe, a typical cluster can be assumed to be in dynamical equilibrium. This justifies
using the virial theorem for estimating the mass of a typical galaxy cluster, adopting the notation
from Pfrommer (2020),

2Eyin = —Epot = Mgaoy = GM;%% = My~ 10" Mg (2.1)

C

In fact, a typical mass range for clusters is 10'3-10' M, (Schneider, 2015). However, adding
up all the luminous stellar mass within the galaxies only unveils a fraction of the cluster mass
(M, = 1/50 M,). This was the original technique used by Fritz Zwicky in 1933 to arrive at a large
mass-to-light ratio of the Coma cluster (Mg /Lg = 400, Zwicky 1933). From this he concluded
that clusters must contain considerably more mass than indicated by their individual galaxies,
otherwise they would have been dispersed long ago. This discrepancy of the gravitating and
luminous mass in galaxy clusters led Zwicky to the postulation of the existence of dark matter.
The question arises as to whether the application of the virial theorem is still justified considering
that the main fraction of mass is not contained in the luminous galaxies themselves. The mass
derivation sketched in equation (2.1) remains valid as long as the spatial distribution of galaxies
follows the total mass distribution. If the latter is non-spherical or the velocity distribution of
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member galaxies is anisotropic, projection effects need to be considered (Schneider, 2015).

2.1.2. Properties in the X-Ray window

A portion of Zwicky’s postulated missing mass was discovered with the Finstein Observatory
(HEAO-2) in 1978 (Giacconi et al., 1979). They revealed that clusters of galaxies contain an
intracluster medium (ICM) emitting X-rays from much of the cluster’s volume and not just by
individual point sources. In fact, galaxy clusters are the brightest, extended extragalactic X-
ray emitting sources with luminosities around Ly ~ 10*3-10% erg/s (Schneider, 2015). This
radiation can be detected throughout the cluster out to several megaparsecs. The ICM can
be described as a hot (T ~ 107-108K), dilute (n, ~ 1073-10"2cm™) intracluster gas that
is distributed homogeneously and filling the cluster’s gravitational potential well (Schneider,
2015). The observed X-ray spectrum resembles the characteristics for optically thin thermal
bremsstrahlung emission. Describing the gas temperature in terms of particle energies, kT =
1-10keV, most of the elements of the ICM are fully ionized, except for recombination lines of
highly-ionized metals like iron (Fe XXV at 8.8 keV and Fe XXVI at 9 keV), silicon and neon
(Carroll and Ostlie, 2014). We will neglect the line emissions and treat the ICM further on
as a fully ionized, pure hydrogen plasma, where number densities and temperatures (Hitomi
Collaboration et al., 2018) of the electrons and the ions are the same. The emissivity via thermal
bremsstrahlung (free-free radiation) is defined as (Schneider, 2015)

320 7%enmn. [ 27 hw

ff 1le 2

= exp | ——— T,v) x 2.2
v 3mecd 3kpTm, p< kgl ) gu(T,v) ocn’, (2.2)

where Ze is the electrical charge of the ion species with Z = 1 for hydrogen, n; . are the number

densities for the ions and electrons, 7" is the gas temperature and gg is the Gaunt factor depending
on the collision frequency v. The Gaunt factor is usually of order unity in classical physics and
only varies from one if quantum effects play an important role (Dopita and Sutherland, 2003).
The remaining quantities are constants with their usual meaning, m. is the electron mass, ¢
is the speed of light, kp is the Boltzman constant and % is Planck’s constant, which are also
summarized in table A.1. The right-hand side of equation (2.2) clarifies the proportionality of
bremsstrahlung emission to be e o n;n, = n?. Since these emission processes are collisional,
the power radiated per unit volume scales with the number density squared, projection effects by
measuring surface brightness become irrelevant. In addition, the gas temperature seems to be a
very good measure for the cluster mass, meaning that it is equal to the virial temperature of the
cluster potential. We can now estimate the mass for a typical, relaxed galaxy cluster following
Pfrommer (2020),

GMCI

Tcl

B = Epot = ngT = pum, = My~ 10" Mg, (2.3)
where m,, is the proton mass and p = 0.5 is the mean molecular weight for a pure hydrogen
plasma. Integrating equation (2.2) over all frequencies and along the line-of-sight through the
cluster results in X-ray surface brightness maps, from which the mass density profile can be
inferred (Longair, 2011). Integrating the latter over the cluster volume yields the total gas
mass, which is approximately Myas ~ 1/7 M (Voit, 2005). Hence, some of Zwicky’s postulated
dark matter is found in the form of the hot ICM, observed via its electromagnetic emission by
looking at a different waveband. This becomes more clear in figure 2.1, where we compare the
observed X-ray and optical images of the Perseus cluster core. Since no significant amounts of
the remaining missing matter can be directly seen in any other waveband, this matter must be
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non-baryonic, only interacting gravitationally. Summarizing the components of the cluster mass
shows, that around 2% is made up of stars, around 13% is due to hot gas and the remaining 85%
is contributed by dark matter (Carroll and Ostlie, 2014).

Figure 2.1.: Left: Deep Chandra X-ray surface brightness map of the Perseus cluster showing its inner 260 kpc
in both dimensions. The highly-resolved diffuse X-ray emission reveals bulk gas motions and distinct
substructures at the cluster core. Regions of displaced emissivity are called X-ray cavities. Right:
Matched optical image with H« line-emitting filaments around the central giant elliptical galaxy
NGC 1275. Both figures are taken from Fabian et al. (2011).

2.1.3. Modelling the X-ray emission

By using numerical simulations astrophysicists are interested in how to infer the gas and mass
distribution of the cluster, which is to model, to match with the properties of the ICM from
the observed X-ray radiation. The derivations presented in this section are following Schneider
(2015). Consider the adiabatic speed of sound in the cluster gas to be

Iz kT km [ T \Y?
~ — = ~ 1000 — 2.4
s \ ng V,ump s < 108K (24)

for a typical gas temperature of T = 108 K, where v = 5/3 is the adiabatic index, p = nkgT is

the gas pressure and p, = num,, is the gas density. The sound-crossing time of the cluster is thus
tse = 2Rg/cs =~ 1Gyr, which is considerably shorter than the lifetime of the cluster, whereas
the latter can be approximated by the age of the universe. ts. is also roughly the time-scale
on which deviations from the pressure equilibrium are evened out. Therefore, the gas can be
in hydrostatic equilibrium, under the premise that the last major merger happened longer ago
than the sound-crossing time itself and the AGN has not injected energy into the ICM via jet
feedback during such a time period (see section 2.2.4). Under these conditions, the galaxy cluster
is called to be relaxed. The application of hydrostatic equilibrium requires to assume that the
net acceleration dv/dt of the gas at any point is zero and that we can neglect external forces.
The Euler equation for conservation of momentum for an ideal, incompressible fluid then reads

%Z—Z—f+g20 (2.5)
where P is the gas pressure, p, is the gas density and g is the gravitational acceleration which
is related to the gravitational potential ® by ¢ = —V®. This relation describes how the gravi-
tational force is balanced by the pressure force. In a spherically symmetric case equation (2.5)
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becomes
1d_p__d<I>__GM(r) (2.6)

p_gdr_ dr r2

where M (r) is the total mass contained within radius r from all forms of matter. Plugging in
p = pgkTy/(my) from the ideal gas law yields

kpTyr? (dlnpy(r) — dInT,(r)
M(r) = ——2-2 - . 2.
) Gumy, < dr * dr (2.7)

Assuming that the gas temperature is spatially constant, equation (2.7) simplifies using T'(r) =
Ty, and the mass profile of the cluster can be determined solely from the density profile of the
gas. Considering such an isothermal gas distribution, a commonly used method of fitting the
X-ray data is the so called S-model (Cavaliere and Fusco-Femiano, 1976).

%wr:%pb+<%)1%W2 23)

Here, pyo is the central gas density and rg is the core radius, the characteristic length scale
within which the density profile flattens out. The index [ is the ratio of the kinetic energies of
tracers of the gravitational potential and the mean thermal energies of the ICM gas particles:
g = agal/agas. Using 8 ~ 2/3 is a good fit for the X-ray emission of many clusters (Schneider,
2015). However, especially for cool-core clusters (see section 2.1.5) a better fit for the density
distribution is given by the double S-model (Xue and Wu, 2000; Santos et al., 2008).

2.1.4. Dark matter halos

Galaxy clusters form where waves of primordial density fluctuations interfere constructively after
the Big Bang (Kravtsov and Borgani, 2012). Most of the clusters mass is contained in form of
dark matter (DM), which clumps in dark matter halos. These halos assemble in filamentary
structures throughout the universe. According to this hierarchical structure formation model,
clusters form at the intersection of these filaments through mergers of smaller groups of galaxies
and inflowing gas. The richest clusters are formed the latest and are generally found in the
densest regions of the cosmic web (Longair, 2011). The evolution of the cosmic web is highly
non-linear and must be modeled by numerical simulations.

The primordial gas collapses following the DM potential. The diffuse and relatively cold-
inflowing gas is then accreted and shock-heated. The higher temperature of the gas slows down
the gravitational collapse and the gas starts to virialize. Although the gas is heated by the
accretion shocks, they alone are not sufficient to reach the observed temperatures of the ICM of
about 108 K. Secondary accretion shocks develop if substructures merge at the inner region of
a cluster that was already heated. The collisional shocks propagate through the dense hot gas
and heat it to the observed values (Dolag et al., 2008; Ha et al., 2018).

In 1997, Navarro, Frenk & White (NFW) showed that cold dark matter halos in N-body
simulations have a universal density profile, well fit by a double power-law (Navarro et al., 1997).
This is the so called NFW profile, which is the most popular parametrization model of dark
matter halos. Its density profile is given by

Perit ¢

T T 27
s(+7)

p(r) = (2.9)
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where peir = 3HZ/(87G) is the critical density of the universe, rs = 7900/c is the scale radius, &,
is the characteristic overdensity of the halo and c is the so called concentration, which is higher
the earlier halos form. Hj is the Hubble constant given by Hy = 100h km/s/Mpc, where h is
the dimensionless Hubble parameter. Beyond radii r, the profile falls off oc »—2 and within 7, it
flattens considerably proportional to 1.

The virial radius rogg is enclosing a mean overdensity of 200 times the critical density. This

implies for the total halo mass My that

47

-1
Ma0o <?7€00> =200 X perit (2.10)

and the mean density of the halo is given as

M (< r900) _ fomoo 47r2p(r)dr
V200 (%T%oo)

Phalo = (2.11)

2.1.5. Cooling Flow Problem

By modelling the ICM in section 2.1.3, we assumed hydrostatic equilibrium, but neglected that
the gas continuously looses internal energy due to its emission. Therefore we need to consider
the cooling time-scale t.,01, defined as the time the gas would need until all of its thermal energy
By, = %nkBT is radiated away by equation (2.2) (Schneider, 2015),

Etn
tcool(r200) — E—;f ~ 7.5 x 1010 yr,

where € is the emissivity integrated over all frequencies, which is calculated in equation (2.13)
below. Hence, tcoo1(r200) > tg ~ 13.8 Gyr is larger than the age of the universe, which allows
a hydrostatic equilibrium to be established throughout the cluster. However, since el oc n?,
the density may become sufficiently large in centers of clusters to yield t.oq < tz at a certain
threshold, where the gas is able to cool quite efficiently. We can estimate the cooling time-scale

at the cluster core, normalised to quantities in our ICs (see section 3.1) to

. n 1 T, 1/2

teool(ro) A 0.96 x 107y (0.03 Cm*?’) <3.88 x 107 K> (212)
Therefore, after exceeding the threshold, the hydrostatic equilibrium cannot be maintained in
those cluster cores. This means, that the cluster gas has to flow inwards, where it gets com-
pressed. By this, the inflowing masses build a counterpart to the gravitational force due to the
increased gas pressure. A new hydrostatic equilibrium is set up with higher core density but lower
temperature (Schneider, 2015). But the increased density will further accelerate the described
cooling process once again, leading into a cooling catastrophe.

These so-called cooling flows (CFs) have indeed been observed in the centers of massive clusters,
in the form of a sharp central peak in X-ray emission. Those clusters are called cool-core clusters
(CCs). CCs are characterized by low cooling times teoo < 1Gyr (Hudson et al., 2010; Voigt
and Fabian, 2004) and low entropies Sy = kgTn=2/3 ~ 10keV cm? (Voit and Donahue, 2005;
Pfrommer et al., 2012) in their inner core radius rg ~ 10kpc. However, the expected high star
formation rates and mass deposition rates M, at which the gas should cool and flow inwards due
to this cooling, have not been measured observationally on large-scales by Chandra or XMM-
Newton and are significantly overestimated. According to the standard cooling flow model, one
also expects to find gas at ever decreasing gas temperatures down to 7, 2 0keV. Instead, as
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revealed spectroscopically, a minimum temperature seems to exist, below which the gas cannot
cool (Peterson et al., 2003). This threshold is usually at one half to one third of the cluster’s
virial temperature at around 1keV (Fabian and Sanders, 2007; Blanton et al., 2010).

These findings point to a local heating process, which prevents the gas temperature to fall
below a certain threshold, while not dominating the cooling process. In fact one observes a
quasi-balance between heating and cooling (McNamara and Nulsen, 2012). Since the cooling
floor is kept constant over long periods (Bauer et al., 2005), we are looking for a relatively gentle,
quasi-continuous distributed heat source. This is pointing towards a self-regulated feedback loop
via active galactic nuclei (AGNs) (see section 2.2.4).

To see how much feedback is needed to counter the cooling catastrophe in the core region, we
consider the total X-ray luminosity as a proxy for the cooling luminosity. In order to do that we
redefine the volume emissivity e as an energy cooling rate by integrating equation (2.2) over all
frequencies, which yields

00 00 2
el = / ldy = / %e‘h"/kBTdu = Ch7'n®/kpT = A(T)n?, (2.13)
0 0 B

where C’h‘lk}g/ ?is a constant and A(T) is a cooling function depending on the temperature of
the gas. It is dominated by bremsstrahlung above 7'~ 1keV and by metal lines below 7'~ 1keV.
In our isothermal cluster model, we have

T 1/2
_ -24 3 .-1

For a more sophisticated cooling function of the ICM, we refer to Kunz et al. (2011) and references
therein. Now we can estimate the cooling luminosity Lx by integrating the cooling rate e over
the cluster volume assuming spherical symmetry. By following the derivations by Pfrommer
(2020) and normalising the cooling luminosity to quantities in our ICs (see section 3.1), we get

kpT &
Lx :/ TdV = Agy/ B 477/ n?(r)ridr
v ksTo  Jo
3 5/ EaT O\ 2
~ 4 % 10% o no B -1 21
<10 <80kpc (0.03cm'3) 3.34keV a8 (2.15)

where Ag is the cooling function with Ty at the very cluster center and n?(r) is adopted by a

B-profile (see equation 2.8). Hence, we are looking for a heating process with an average rate of
~10* erg/s in order to balance the cooling losses in the ICM.
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2.2. AGN feedback

As already described phenomenologically in section 2.1.5, hydrodynamic simulations modelling
the gas dynamics of DM halos incorporating solely radiative cooling and gravitational heating
cannot reproduce the central gas densities, temperatures and baryon fractions of the hot ICM
(McNamara and Nulsen, 2012). Baryons respond to more complex processes like energetic feed-
back from supernova explosions and AGNs. Multiple studies of observational X-ray data by
XMM-Newton and Chandra have shown that radio AGN are probably the principal driving me-
chanism heating the hot atmospheres of galaxy clusters and suppressing cooling rates (see Soker
(2016) and references therein). Other heating mechanisms have been suggested over the years
and are briefly discussed in section 2.2.5.

As the cluster atmosphere cools and condenses into molecular clouds and cold clumps, stars
are able to form and the ambient gas is accreted by a super-massive black hole (SMBH) found
in the central brightest cluster galaxy (BCG) of almost all CCs. From a simplified point of view,
the accretion flow onto the black hole launches collimated outflows whenever the accreted gas
has a large enough specific angular momentum (Soker, 2016). More specifically, these outflows
are relativistic jets powered the central AGN. The jets are composed of cosmic rays and toroi-
dal magnetic fields, which causes non-thermal radio-synchroton and v-ray emission via particle
acceleration. At some point the momentum of the relativistic outflow slows down due to the
ram pressure of the ambient ICM. The cluster gas gets pushed away by the jet fluid, thereby
inflating large radio-emitting lobes on either side of the nucleus. These lobes coincide with ca-
vities observed in the X-ray band, as in e.g. Hydra A (McNamara et al., 2000), Perseus (Fabian
et al., 2000) or Abell 2052 (Blanton et al., 2001). We will further on use the terms cavity and
lobes, referring to bubble observations in the X-ray or the radio regime, respectively. The whole
picture is shown in figure 2.2 for the Perseus cluster. As the jets terminate, the bubbles detach
and are now injected at the bottom of the gravitational cluster potential. The bubbles are hotter
(Thup =~ 100 X Ty, estimated observationally (Soker, 2016)) and underdense (ppup, &~ 0.01 X pamb
used numerically (Dong and Stone, 2009)) compared to the ambient gas of the ICM. Hence, the
bubbles are not static and start to rise buoyantly and subsonically up the cluster atmosphere
(Pfrommer, 2020). Subsonically, because the bright rims surrounding many active cavities are
observed to be cooler than the ambient ICM. This implies that they have been uplifted without
being strongly shocked (Boettcher et al., 2012).

2.2.1. Jet-inflated bubble properties

In order to reproduce a proper evolution of bubbles, numerical simulations show that jet inflation
can sufficiently stabilize the bubbles (Sternberg and Soker, 2008) in order to match their longevity
with observations (see section 2.2.2). The morphology and geometry of the bubbles is strongly
affected by the properties of the jets inflating them. The primary parameter thereby is jet power
(Ehlert et al., 2018).

Cavity systems show a large spread in terms of their sizes. Typical observed radii have values
of rpup ~ 10-15kpe (Rafferty et al., 2006), but can go up to 200 kpc in diameter for the Hydra
A cluster or MS0735.6+7421 (Nulsen et al., 2005; McNamara et al., 2005). The distribution
of the ratio between the projected distance R between cavity center and the nucleus and the
cavity radius rp,p shows a strong peak at R/rpyp =~ 2. Meaning that jet-inflated bubbles travel
their own diameters after they have detached from the jet and before they will dissipate into the
atmosphere and will not be detectable any longer (McNamara and Nulsen, 2007).

Looking at the buoyancy time-scale, cavities have typical ages of ty,,0y ~ 107 — 108 yr. The
time taken between single injections of bubbles is of the same order of magnitude, e.g. in Perseus
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Figure 2.2.: Large-scale Chandra final composite residual surface brightness map of the Perseus cluster in the
X-ray band taken from Fabian et al. (2011) . Overlaid are low-frequency radio contours taken from
data of the Very Large Array (VLA) (Weeren et al., 2020). The beam size is shown on the top-right
corner. In the center lies the giant elliptical galaxy NGC 1275, whose SMBH powers bipolar jets
into the ICM, which are inflating under-dense bubbles. Those are simultaneously visible as X-ray
cavities and radio lobes (labeled inner cavities). As the bubbles rise buoyantly outwards the cluster
atmosphere, they become disconnected from the feeding jets (labeled outer or ghost cavities).

(McNamara et al., 2000). This implies that there are periods of time where no jets are launched,
e.g. in Ophiuchus (Werner et al., 2016). The so-called cyclical jet feedback mechanism (JFEM)
(Soker, 2016) is based on the fact, that CCs with two or more bipolar pairs of bubbles are seen,
like in Perseus (Fabian et al., 2000) or Hydra A (Wise et al., 2007). In addition, even clusters
inhabiting very powerful AGNs like MS0735.6+7421 show large-scale symmetry in their cavities,
which is visible at times after multiple outburst cycles have happened (McNamara and Nulsen,
2012). Simulations also show (O’Neill and Jones, 2010; Mendygral et al., 2012) that a cyclical
JFM is able to make the lobes more spherical, as observed. Instead, a steady, continuous jet
support produces highly elongated fronts (Vernaleo and Reynolds, 2007).

Nevertheless, some properties of bubbles cannot be determined yet from observations like the
temperature or the general content of the filling gas, because of the very low densities inside
the bubbles (Soker, 2016). Magnetic fields are assumed to be sub-dominant within the bubbles
and small-scale vortices could dominate their energy content (Hardcastle and Croston, 2005;
Hardcastle and Krause, 2014). The alignment of magnetic fields in radio lobes can be derived
from the degree of polarization of synchroton radiation. For FR-type I jets, which are considered
throughout this thesis, the magnetic field lines are found to be typically perpendicular to the jet
axis (Hawley et al., 2015).

2.2.2. Bubble stability

While theoretical studies suggest that bubbles should be rapidly disrupted in a CF environ-
ment, observations indicate that they live for a long time, meaning that the lobes sustain their
morphology with a spherical front over ~ 100 Myr, analysed observationally (Rafferty et al.,
2008) and numerically (Bourne et al., 2019). However, some development of RTT are seen at the
center-front of some bubbles, e.g. in Abell 2052 (Blanton et al., 2001, 2003) or in the northwest



17 Chapter 2. Theoretical Background

bubble in Perseus (Fabian et al., 2002; Soker et al., 2002). Advances in numerical simulations
have been showing that buoyantly rising bubbles are disrupted through KHI or RTT. Disruption
can be delayed if the instability is suppressed by either turbulent diffusion (Scannapieco and
Briiggen, 2008), magnetic draping (Ruszkowski et al., 2007; Dursi and Pfrommer, 2008; O’Neill
et al., 2009), favorable dynamics (Pizzolato and Soker, 2006), or CRs (Ehlert et al., 2018). This
thesis will focus on the suppression of instabilities by viscosity and investigate whether viscosity
can preserve coherence of rising bubbles by damping the small-scale perturbations, which was
especially studied by Reynolds et al. (2005) and Dong and Stone (2009). Thus, the model setup
for the ICs, described in section 3.1, follows the ones used by those two papers.

As long as the lobes remain intact, they will maintain approximate pressure balance with their
surroundings while rising buoyantly. As their pressure decreases with time, their enthalpy will
also decrease, which releases energy into the ICM, mostly as kinetic energy in the flow around
rising bubbles (McNamara and Nulsen, 2007).

2.2.3. Cavity power

Since almost every CC with ¢, < 1Gyr hosts an active radio source in their BCG (Mittal
et al., 2009), sufficient amount of energy could have been also generated via synchroton radiation.
The synchroton emission, which is visible in the radio, is due to CR-electrons gyrating around
magnetic field lines. Comparing cavity power with bolometric radio power reveals that the
mean mechanical power is 100-1000 times larger than the synchroton power (Birzan et al., 2008;
O’Sullivan et al., 2011), making the synchroton radiation highly inefficient for heating the ICM.
Hence, the AGN’s energy required depends on its mechanical power and not its radio luminosity.
If we assume that the rising cavities are governed by buoyancy, their ages and mean jet power
can be estimated (Churazov et al., 2002; Birzan et al., 2004). As the X-ray cavities are inflated,
they do pV work (mechanical energy) against the ICM. At the same time, as the relativistic jets
displace the ICM at the location of the cavities, they provide the pressure supporting the latter
in form of internal energy FEyy,. Hence, the total energy required to create the cavity is equal to
its enthalpy, (Gitti et al., 2012)

H=FEy+pV=—LpV=

2.5pV, for~=5/3,
5 { PV, fory =5/ (2.16)

4pV, for v =4/3,

where 7 is the ratio of specific heats of the cavity plasma, which depends on whether the pressure
support is supplied by relativistic or non-relativistic plasma. Looking at the measured synchroton
emission, one has to assume equipartition between the energy of the particles and the energy of
the magnetic field of the bubbles. From this, one can infer the pressure of the bubbles, which
is only ~ 10% of the pressure of the surrounding ICM (Worrall, 2000; Croston et al., 2008). In
order to keep the bubbles stabilized, either a very hot thermal gas (which is not observed) or a
non-thermal component has to be present (McNamara and Nulsen, 2012). If the radio emitting
lobes were filled with a non-relativistic thermal plasma, the temperature would need to exceed
~ 20keV in order to be undetectable by its thermal X-ray emission (Blanton et al., 2003; Gitti
et al., 2007). Therefore, it is more likely to assume that the bubbles are filled with relativistic
plasma, giving v = 4/3 and H = 4pV per cavity. The cavities may be filled with more complex
gas (with a non-thermal component to stabilize the bubble (McNamara and Nulsen, 2012)), but
observations selected for large, fully-grown bubbles are roughly consistent with MHD simulations
using 4 pV per cavity (Mendygral et al., 2011). However, in our simulations we assume that the
bubble interior is non-relativistic and we will neglect the effects of CRs in the rest of the thesis.

In order to estimate the AGN heating rate based on the cavity power, we need to obtain the
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ratio between work done by the two bubbles and the buoyancy time. The derivations covered
hereafter are following the lecture notes from Pfrommer (2020). The cavity power is the product
of the volume of the bubble and the surrounding pressure. Normalizing it to quantities in our
ICs (see section 3.1) yields

4 Tbub Tlamb ksT
V=2 kpT x —mrd, ~ 3 x 10° . ( . ) - 21
P X NambRkBL X 37T7“bub X erg 20 kpe 0.03 cm-3 3.34keV (2.17)

Subscripts amb and bub are abbreviations for the ambient and bubble component of that quan-
tity, respectively. The expression is multiplied by two to account for both of the bipolar aligned
bubbles. The buoyancy rise time can be computed by balancing the buoyancy force Fj,,oy acting
upon the bubble with the drag force Fy,,s exerted by the ram pressure on the bubble, yielding
the terminal velocity v; (McNamara and Nulsen, 2007)

_Cu

2 O'pambv2 - HFdragH

”Fbuoy” - _gvbub(pamb - pbub) =

(2.18)

vy = 29Voub pamb — Pbub . [29Vbub
0Cq Pamb oCq ’

where o is the cross-section of the bubble, g is the gravitational acceleration and Cy is the drag
coefficient, which depends on the bubble geometry and the Reynolds number (see section 2.3.4).
For a Mach number of M = 0.7 the drag coefficient is Cy ~ 0.6 (Churazov et al., 2001). In
the last step we assumed ppu, < pamb- As a last step it is also useful to introduce an estimate
for the sound-crossing time tg. normalised to quantities in our ICs (over the gravitational radius
R¢), which is given by

(24) Rg 8 Rg < Cs )_1
tee = ~3x10 .
se = T Fex AT <240 kpc ) \B00kms T

Together with the rise velocity from equation (2.18) we can now deduce the buoyancy time tpyey
for a bubble at distance R from the cavity center to the SMBH,

R 1/2
ooy = — A2 0.6 X tsc (2 > ~4x10Ps~1.3x10%yr, (2.19)
t

Tbub
where the first approximation is derived in Birzan et al. (2004). Our estimate is in agreement
with observations (see section 2.2.1). The buoyancy time gives a reasonable estimate for the
later stage of a cavity system, long after it was injected by its AGN (McNamara and Nulsen,
2007). We can finally combine equations (2.19) and (2.17) to obtain the AGN heating rate,

2.5pV 1079
PY 75 x )

tbuoy 4 x 10155

LAGN & ~2x10%ergs ™t ~ 0.5 x L. (2.20)
Hence, the AGN heating rate based on cavity power is comparable to the X-ray cooling lumino-
sity, obtained from equation (2.15), which is supported by observational analysis of the cooling
region in CCs (Rafferty et al., 2006; Gitti et al., 2012). This suggests that heating via AGN
feedback is the primary mechanism providing roughly enough energy (in synergy with additional
heating sources) to substantially prevent cooling flows in cool-core clusters (McNamara and Nul-
sen, 2012). How much energy is contributed by other proposed heating channels is an ongoing
field of studies (see section 2.2.5).
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2.2.4. Heating by AGN feedback

As described in section 2.2.3, the overall energetics between jet-induced power and cooling lu-
minosity seem to be fitting. Neither cooling nor heating is dominating. Even the most powerful
AGNs with the shortest cooling times in CCs (e.g., MS0735.6+7421 (McNamara et al., 2005))
show stable and long-lived CFs. Additionally, as pointed out in section 2.2.1, AGNs trigger out-
bursts on time-scales shorter than the cooling time-scales in their center. In fact, thuey < feools
meaning that generally cavities are younger than the time needed for the ambient gas to cool.
This implies that jets are launched frequently enough to prevent runaway cooling (McNamara
and Nulsen, 2012). Steep abundance gradients show that there is no large-scale mixing taking
place (Fabian, 2012). This gentle, quasi-continuous (on time-scales < 10 yr, (Rafferty et al.,
2008)) heating process is shown as a flattening of the central entropy profiles (Voit and Donahue,
2005).

The general heating mechanism works as follows. As a buoyant cavity rises, it displaces gas,
which must fall inward to fill the low-density wake. There, kinetic energy is generated from
gravitational potential energy, which is then dissipated locally (McNamara and Nulsen, 2007).
The energy created this way by the cavity is equal to the concomitant loss of enthalpy thermalized
in its wake (Churazov et al., 2002). However, it is still under debate, how the thermal energy
is supplied, distributed and dissipated on the right spatial scales to balance radiative cooling
throughout the core of the cluster. The exact coupling mechanism has not been identified yet.
(McNamara and Nulsen, 2012; Fabian, 2012; Soker, 2016) Different theories are briefly mentioned
in section 2.2.5.

X-ray observations by Hitomi of the Perseus cluster core reveal low velocity dispersions (Hitomi
Collaboration et al., 2018). Hillel and Soker (2017) conclude, that heating by small-scale mixing
of hot bubble plasma with the ICM is very likely. The mixing is taking place in the wake where
vortices have formed. These vortices also excite sound waves and turbulence, but they only
make up < 20% to the heating process. Shocks contribute even less Hillel and Soker (2017). The
mixing is depositing CRs and magnetic energy as well.

Looking at the ICM as a whole, no single heating process seems to be dominant over all
radii (McNamara and Nulsen, 2007). Many of them are probably relevant. At the innermost
part, weak shocks are likely to be most significant. At radii where the lobes are formed, cavity
heating takes over and on larger scales, sound damping may become dominant. At the outermost
scales, thermal conduction is the most efficient. All in all, heating by AGN feedback seems to
be dominating from the inside, while conductive heating is working from the outside of a CC
(McNamara and Nulsen, 2007).

2.2.5. Other Heating Mechanisms

We described how the AGN-inflated cavities theoretically inhibit roughly enough energy to ba-
lance radiative cooling via bremsstrahlung while preventing the cooling catastrophe. As already
mentioned, there is no consensus how this AGN energy is actually thermalized and which pro-
cesses are key for transfer the energy from the jet-inflated bubbles to the ambient ICM. Many
different heating mechanisms have been proposed over the years and discussing all of them will
be far beyond the scope of this thesis. Therefore, we only list recent studies of the most common
discussed heating models, which include AGN-initiated weak shocks (Li et al., 2016; Guo et al.,
2017), dissipation of sound waves (Fabian et al., 2017; Bambic and Reynolds, 2019), dissipation
of internal waves (Zhang et al., 2018), dissipation of turbulence (Zhuravleva et al., 2014), mixing
of hot bubble gas with the ICM (Hillel and Soker, 2017), gas sloshing (Ueda et al., 2020), CRs
(Jacob and Pfrommer, 2017b; Ehlert et al., 2018) and thermal conduction (Yang and Reynolds,
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2016b).
In this work, we will focus on viscous heating in section 4.1.3.
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2.3. Plasma Physics

2.3.1. Plasma Parameters

We have treated the ICM as a completely ionized, ideal gas in the previous sections, but it can
also be well described as a plasma fluid if the particle mean free path, Ang,, is much shorter
than the characteristic system size, L (Pfrommer, 2020). To check whether this can be taken for
granted, we need to introduce some plasma parameters. Consider a non-relativistic hydrogenic
plasma with equal ion and electron number densities, n = n; = n., and temperatures, T" =
T; = T.. The mean mass per particle is then m,/2 and the (iso-)thermal speed of the ions
is v = (p/p)"/? = (2kpT/m,)"/? (see equation (2.4)). Together with the ion-ion collision
frequency, v = 0.06 x In A x n;T~3/2s71 (see equation (2.29)), the value of the mean free path
in a cluster atmosphere can be estimated as (see ZuHone and Roediger (2016))

A Yth 0.5k ( " )'1 kpT 1\’ (2.21)
= — =X U. C .
mfp = P 0.03em—3 334keV )

where In A ~ 30 is the Coulomb logarithm. The characteristic system size can be estimated via
the thermal pressure scale height H (Kunz et al., 2012) by considering ¢ = p~'dp/dr as the
gravitational acceleration (see equation (2.6)).

v2 n kpT g -1
=" 4130k ( ) ( ) . 2.22
g PeN0.03em—3/ \ 334kev ) \ 108 cm 52 (2.22)

Hence, Ay, < H and the fluid description of the ICM is applicable and the plasma is said to

be weakly collisional. This can be expressed in terms of the Knudsen number, Kn = A\, /H,
which is a dimensionless measure for collisionality. Since Kn ~ 0.004, the intracluster plasma is
not purely collisional, but rather weakly collisional. Plasmas with Kn 2 1 would be effectively
collisionless. The ion-ion collision frequency v can also be related to the ion gyrofrequency
Q; = ¢; B/myc of a particle gyrating around a magnetic field line of constant strength B due to
the Lorenz force. €; is also called the Larmor frequency and the corresponding Larmor radius
(or ion gyroradius) r; is defined by

VUth n kpT B \!
T npc(0.03cm*3) (3.341@/) <1MG> (223)

The ratio of the Larmor radius to the characteristic length scale of the system is called the

plasma magnetization parameter J; (Hazeltine and Waelbroeck, 2004). Thus as §; = 7/ Amgp <
107 <« 1, the ICM is magnetized, meaning that a particle gyrates around a magnetic field
line so many times before it collides with another particle, that we can say it is tied to the field
line. In other words, the collision frequency is much smaller than the gyrofrequency. Putting all
relations together, we get that r; < Ay, < H.

Furthermore, turbulence can excite three MHD waves, of which two are similar to sound waves
(the fast and slow compressive modes) and one is solenoidal (the Alfvén mode). For the latter
the Alfvén velocity for ions is given by

B N13km< n )—1/2 B (2.24)
AT amp % 7s \0.03em—3 14G )" '

Studies find that turbulent gas motions in CCs have velocity dispersions of several hundred km /s

at the outer scale of several tens of kpc, which is shown both observationally with Hitom: in
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Perseus (Hitomi Collaboration et al., 2018) and numerically with simulations of cluster formation
(Miniati, 2014). This means that ICM turbulence is super-Alfvénic on the largest scales initially.
Therefore, magnetic fields are probably not very important dynamically on such scales and the
plasma is well shaped by fluid motions (Donnert et al., 2018). The ratio of thermal gas pressure
pin = nkpT to magnetic pressure pg = B2 /87 is described by the so-called plasma-/3, which is
a dimensionless parameter for the effective strength of the magnetic field.

2%kpT  8mnkpT n kT B \?
_ _ ~ 4000 ( ) : 2.25
p mpva B2 0.03 cm—3 <3.34 keV> (1 uG) (225)

Since f is typically quite high (Carilli and Taylor, 2002) it is interesting to investigate whether

weak magnetic fields are dynamically important at all in cluster atmospheres. One goal of this
thesis is to study how such a weakly magnetized medium affects the evolution of buoyantly rising
bubbles.

2.3.2. ICM as a weakly collisional plasma

Therefore, the ICM can be treated as a weak collisional plasma with a weak magnetic field
with | B|| ~ 1uG. In centers of CCs magnetic field strength of tens of microgauss have been
inferred, which scale with thermal density, while considering that the plasma-£ is constant
(isothermal) (Clarke et al., 2001; Bonafede et al., 2010). Both the Coma and the Perseus cluster
host a turbulent magnetic field consistent with a Kolmogorov power spectrum (Schuecker et al.,
2004; Subramanian et al., 2006). Evidence for magnetic fields comes from Faraday rotation
measurements and synchroton emission of radio sources in galaxy clusters (Ferrari et al., 2008;
Govoni et al., 2010).

In addition, if the ICM would be governed by Coulomb collisions, transport properties would
be isotropized. But since the plasma is only weakly collisional, the particles are coupled to the
magnetic field lines, making transport of heat and momentum anisotropic. In turn, the magnetic
field lines are frozen into the plasma fluid and advected with the bulk motions of the ambient
medium (Kulsrud and Ostriker, 2006). In other words, motions of the intracluster gas causes
changes in the magnetic field strength as the field is dragged along with the gas flow. This
aspect is related to the magnetic Prandtl number Pr,,, = v/n, which is the ratio of momentum to
magnetic diffusivity. For galaxy clusters we get Pr,,, ~ 10%? > 1, hence the viscous-scale motions
dominate (Schekochihin and Cowley, 2007). Such conditions induce a small-scale dynamo, which
amplifies the magnetic fluctuations by random stretching of the field lines on time-scales of 108 yr
(Schekochihin et al., 2005).

All this together fundamentally changes the stability properties of the ICM, which differ from
those expected from the Schwarzschild criterion. This criterion states that an atmosphere is sta-
ble to convection if the entropy, S, increases with height as dS/dr > 0 (Carroll and Ostlie, 2014).
As pointed out in section 2.1.5, a positive entropy gradient is indeed observed for CCs (Piffaretti
et al., 2006). Although the ICM is stable against convection according to the Schwarzschild
criterion, it is not applicable because the ICM is a weakly collisional and weakly magnetized
plasma. So the aforementioned anisotropic transport needs to be considered, which means that
e.g. the gas pressure perpendicular and parallel to the local magnetic field become unequal,
resulting in anisotropic viscous stresses. Particle motions perpendicular to the magnetic field are
suppressed and motions parallel to the field are either unconstrained or limited by Ayg, < 7.
Collisions between ions do not occur frequently enough to counteract the pressure anisotropy.
These effects make the ICM subject to fast growing instabilities on microscopic scales (between
r; and Apg,) where their description by Braginskii-MHD becomes invalid (see section 2.3.6).
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2.3.3. Turbulence

Turbulence according to Kolmogorov (Kolmogorov, 1941) describes how the energy of a nonlinear
process is cascaded from large scales of vortical fluid motion to small scales of length [ at a rate
kv, where k = 27/l is the wave vector, v is the velocity dispersion (the root-mean-square of the
power spectrum at scale k) and [ is the eddy size. For subsonic turbulence (v < vyy,) the velocity
fluctuations are adiabatic, which is implied by assuming an incompressible flow, V- v = 0. At
the macroscopic injection scale, L, energy is fed into the turbulent cascade by inducing fluid
motions manifesting as eddies of size of the outer scale. This is also called the driving scale of
the turbulent system, where in the case of galaxy clusters the driver might be a major merger or
an AGN jet. The largest eddies break up into smaller ones due to the convective term, v - Vv,
in the fluid equations. Energy is being transferred at each smaller length scale until the local
kinetic energy gets dissipated by viscosity at the microscopic inner scale, lyis.. Here, at scales of
order of Ay, viscous shear stresses dissipate the vortical motions into thermal energy and the
Lorentz force dissipates the local kinetic energy into magnetic energy in case of a dynamo. Note
that the dissipation scale is locally isotropic while the injection scale is highly anisotropic. The
intermediate range of scales [, where L > [ > Iy, is called the inertial range. At each scale,
the cascading time-scale is the eddy turnover time, ¢; = [/v;, where v; is the typical rotational
velocity across the eddy. The cascading itself is not depending on the driving scale (Schekochihin
and Cowley, 2007). In the inertial range, energy cascading scales as ey o v7/t; o v (1/L)?/3
and the turbulent velocity scales as v; oc [1/3. This implies that the largest eddies have the
highest velocities and kinetic energies, while the smallest eddies have the highest vorticity. In
other words, the turbulent system is driven by energy at the outer scale, but dominated by
viscous forces at the dissipative inner scale. The hierarchy of eddies can be described by the
energy power spectrum E(k) (Schekochihin and Cowley, 2007),

v~ / E(K)dK ~ 2Pk = B(k) ~ 3,53, (2.26)
k

The characteristic time-scale for turbulence of a typical galaxy cluster to be established during
a major merger is t;, = L/v; ~ 300kpc/(1000kms~!) ~ 300 Myr (Brunetti and Lazarian,
2007), where vy, is the velocity dispersion of the largest eddy at the outer scale L. In case
that AGN-inflated bubbles are driving turbulence in a relaxed ICM, the characteristic time-
scale can be estimated as t, ~ 20kpc/(400kms~!) ~ 50 Myr (see section 3.1). Observationally,
these scales are in agreement with turbulence measures using pressure maps, i.e. in the Coma
cluster (Schuecker et al., 2004). Additionally, the viscous scale of an AGN-driven cluster can
be approximated as lyise ~ LRe™* ~ 1kpc (Schekochihin et al., 2005), where Re = 50 is the
Reynolds number based on typical values of the ICM (see section 2.3.4). Comparing lyisc with
Amfp from equation (2.21) shows that both act on length scales of roughly the same order of
magnitude.

Turbulent fluid motions in a cluster atmosphere can be induced by stresses of tangled mag-
netic field lines permeating the cluster. Concomitantly, the magnetic field power spectrum is
also consistent with a Kolmogorov power spectrum as observations (Schuecker et al., 2004) and
simulations (Gaspari and Churazov, 2013; ZuHone et al., 2016) find for the Coma cluster. Also
the Perseus CC (Subramanian et al., 2006) and Hydra A (Kuchar and Enflin, 2011) seem to
host a turbulent magnetic field. Bonafede et al. (2010) and Kuchar and Enflin (2011) fit their
models to Faraday rotation measurements to constrain the magnetic field strength and to find
the magnetic power spectrum. They find a magnetic field dependence on the electron number
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density as
<BQ(T)> oc n2%(r) (2.27)

with @ = 0.4 — 0.7 (Bonafede et al., 2010). These findings are consistent with a constant plasma
beta throughout the cluster gas, since 8 = 87nkT/B>.

2.3.4. Reynolds Number

As introduced in the previous section, a turbulent fluid cascades large scale motions to progres-
sively smaller scales until viscous forces become important to dissipate the kinetic energy. At
larger scales the fluid motion is undamped. To indicate at what scale the viscous dissipation
takes over, the Reynolds number, Re, is introduced. The Reynolds number is a dimensionless
quantity to show whether a fluid is governed by laminar flow or turbulence. It is defined as
the ratio between inertial and viscous forces in a fluid. Hence, for Re > 1, viscous forces are
not important at all at the inertial scales and vortical motions will be produced. Considering

-1

the kinematic viscosity v = p1/p = AmfpUsh, which has units of cm?s™!, we can also define the

Reynolds number as the ratio of dissipative to advective time-scales (see Pfrommer (2020)),

_ o _ Lvp L wr (2.28)

Re ,
Lady v )\mfp Uth

where tgis = L? /v and t,qy = L/vr. Here, L and vy, are characteristic length and velocity
scales of system size. Therefore, Re can be expressed as the product of the ratios of macroscopic
to microscopic length and velocity scales. Again, for Re > 1, advection is dominating and
dissipation cannot stabilize the growth of the turbulent modes.

As pointed out in section 2.3.2, due to the pressure anisotropy in the ICM, heat and momentum
are transported along the magnetic field lines with unit vector b = B/||B||. So, the kinematic
viscosity (also called momentum diffusivity) parallel to b is v = u/p = p1/nymy,, where p is the
dynamic viscosity, p is the density of the fluid, n; is the number density of the ions and m,, is
the mass of one particle. An upper limit for the kinematic viscosity has been found from X-ray

! on scales of 90 kpc (Schuecker et al.,

observations for the Coma cluster of v < 3 x 10%? cm? s~
2004). In numerical simulations, a ceiling has been applied, i.e. by modelling the Perseus cluster
with v < 10% cm?s™! (Kingsland et al., 2019).

Further, p = 0.96 x p;/vi; = 0.96 x n;kpT /vy (Kunz et al., 2012), where p; is the ion ther-
mal pressure, vy is the ion-ion collision frequency, kp is the Boltzmann constant and 7' is the
temperature of the fluid. Considering the value of vy for fully ionized plasmas (Richardson,

2019),

A metn In A ;In A
b — Méns —6.0x 10208 1 (2.29)
3/ gk T2 T=

to be Spitzer if kg = 1.381 x 10" erg/K (Spitzer, 1962). This yields for the dynamic viscosity,

5

7t
Hsp = 2.2 X 10'15ﬁ gem st (2.30)
n

where T is measured in Kelvin. We can now write for the Reynolds number

5

Lv;,  Lun L Ty ~3

Re = — & = 2O _ 9351078 x ( oL > <—> <£> <—> xwvrolonoTy *, (2.31)
V| Hsp vro/) \ Lo/ \no/ \To

where we used In A = 30 in the prefactor (see e.g. Dong and Stone (2009) or Kingsland et al.
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(2019)). We can use this notation to compute the Reynolds number from the ratios of four easily
accessible variables. Typical values for the ICM in CCs yield Reynolds numbers of order < 102
(Schekochihin and Cowley, 2007; Brunetti and Lazarian, 2007) if we assume Spitzer viscosity.

The Reynolds number can be estimated for the ICM of the Perseus cluster core region if vy,
and L are inferred from Hitomi Collaboration et al. (2016) and n and T are inferred from Fabian
et al. (2017):

Re a2 50 | ——ok L (cor—=) o e (2.32)
¢\ 164km/s ) \10kpe ) \0.04cm—3/ \3.87 x 107K '

2.3.5. Braginskii-MHD

Ideal magnetohydrodynamics (MHD) is a continuum theory that combines the equations of fluid
dynamics with Maxwell’s equations to describe the behavior of a magnetized conducting medium.
It is only applicable as a fluid approximation and does not describe the individual motions of
particles directly, which would be subject to kinetic theory. Instead, the distribution functions,
f(&,U,t), are replaced with plasma moments such as density, mean velocity and mean energy.
These moments are taken from the Vlasov equation extended by a collisional term. We refer to
Baumjohann and Treumann (1997) for a full derivation.

As pointed out in section 2.3.2, the ICM is highly conductive (Pm > 1), so that its resistivity
is negligibly small. Thus according to the induction equation, the magnetic field lines are frozen
into the plasma fluid, known as Alfvén’s theorem (Alfven, 1942). In addition, as described
in section 2.3.1, the ICM must be modelled as a weakly collisional, magnetized plasma, where
Amfp > 7. Therefore, on macroscopic scales (greater than Ay, ), the transport of momentum and
heat becomes highly anisotropic along the direction of the local magnetic field lines, making the
ideal MHD approximation inadequate. Accounting for anisotropic viscosity and heat conduction
in form of diffusion terms leads to an extended MHD model, the so-called Braginskii-MHD
(Braginskii, 1965). At frequencies below the Larmor frequency €2; and at scales above the ion
gyroradius r;, the fundamental equations of motion (mass continuity, momentum, induction,
energy) can be given in conservative form and in Gaussian units as (see e.g. Kunz et al. (2012);
ZuHone and Roediger (2016))

dp
a5 + V- (pv) =0, (2.33)
a(gf) +V - (pov +P) = pg, (2.34)
aa_]f =V x (vxB)=-V-(vB - Buv), (2.35)
a(ap:) +V - [(pel +P) v +Q| = pg - v, (2.36)

where € is the energy per unit mass, so that pe is the energy per unit volume with v = 5/3 and
pev is the internal energy flux. The total energy density (kinetic, internal, magnetic) is given by
1 P B?

pe = 5pv2—{—ﬁ—{—8—ﬂ_. (2.37)
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The pressure tensor is given by

B2 B2
P=(pr+——|I—-\pL—p+-—=)bb
8w 4
B?>_ BB
_prymy S BB (2.38)
8w 4
with total thermal pressure:
2 1
_ = z 2.39
p=3PL + 3Pl (2.39)

where py (p)) is the pressure term perpendicular (parallel) to the local magnetic field with
b = B/B as the unit vector and bb as a dyadic product. The terms B?I /87 and BB /4w can
be recognized as magnetic pressure and magnetic tension, respectively. The additional terms
in equations (2.34) and (2.36) extending ideal MHD are the anisotropic heat flux @ (which we
neglect) and the anisotropic viscosity tensor

= _Ap (bb - é[) , (2.40)

where the pressure anisotropy is defined as Ap = p, — pj. It arises from the conservation of
the first and second adiabatic invariants for each particle (Chew et al., 1956). Viscosity and
heat break these conservation laws. The so-called Chew, Goldberger & Law (CGL) equations
can be derived from the Vlasov-Landau equation by taking the moments mv? /2 and mvﬁ (see
Schekochihin et al. (2010) and references therein). If viscosity and heat are neglected, then the
CGL equations reduce to

d DL d p||B2
ZmE ) = — 11 = 2.41
pLdt <an> 0’ p”dt (Il p3 0’ ( )

where d/dt = 0/0t +wv -V is the Lagrangian time derivative. We refer to Berlok (2014) for a full
derivation. The first (second) adiabatic invariant in equation (2.41) arises from the conservation

of angular (longitudinal) momentum. The non-reduced CGL equations together with collionality,
including viscosity and heat conduction, can be combined to get an expression for the evolution
of the Braginskii pressure anisotropy:

d B3

p
Ap=pi —p| :0.96;—111

2.42

Hence, in a weakly collisional plasma like the ICM the production of pressure anisotropy is
being relaxed by collisions, whereas would be quickly isotropized in a collisional plasma (having
a Maxwellian distribution) (Schekochihin et al., 2005). As the first adiabatic invariant p =
mvi /2B is only weakly broken by collisions (since Apg > r;), any change in B leads to a
proportional change in p; such that p; /B = const (Schekochihin and Cowley, 2007). We can
rewrite expression (2.42) by using the continuity equation (2.33) and the induction equation
(2.35) to replace the time derivatives of p and B with velocity gradients. We may also use the
identity relating the evolution of magnetic field strength with the rate of strain, assuming that
motions in the inertial range are subsonic (see section 2.3.3),
1dB

where : is defined as the trace of a matrix product, such that bb : Vv = ¥;35,b;b;0;v;. The



27 Chapter 2. Theoretical Background

anisotropic pressure from equation (2.42) now reads

Ap = 5(31;1) —1): Vo= puy(3bb: Vo -V - v), (2.44)
11
where 14 is the ion-ion Coulomb collision frequency. The prefactor ps, = p/vi = pY| is the
dynamic viscosity coefficient, or simply called Spitzer viscosity in terms of ions (see section
2.3.4). v| is the kinematic viscosity parallel to the local magnetic field line. This shows that
the pressure anisotropy is effectively working out as an anisotropic viscous flux and the viscosity
tensor from equation (2.40) becomes (Braginskii, 1965)

1 1
T = — 3, (bb - §I> (bb - §I> , (2.45)

which is implemented in AREPO by Berlok et al. (2019) (see section 2.4.1). While modelling a
weakly collisional, magnetized plasma like the ICM, it is inevitable using the Braginskii extension
of ideal MHD, if one is interested in studying the effects of thermal conduction and/or viscosity.
However, e.g. the viscous stress tensor does not necessarily have to take an anisotropic form as
in equation (2.45). In the presented thesis, we are also interested in how Braginskii viscosity
affects the transport processes of the plasma and thus the morphology of the rising bubbles if
the viscosity tensor is in fact isotropic and not depending on an pressure anisotropy. In this case
the isotropic viscous stress tensor is simply given by (Kingsland et al., 2019) as

i, = — fo sy V0. (2.46)

This form is justified if the weak magnetic field is turbulent throughout the volume of a simulated
cluster and isotropically tangled (ZuHone and Roediger, 2016). Then f, becomes a suppression
factor accounting for reduced viscosity (below the Spitzer value) due to averaging over the random
direction of the magnetic field. Not all of our simulations have an initially turbulent magnetic
field setup, especially not our fiducial run (see section 3.1). Therefore, we use a more elaborated
version where the isotropic viscosity tensor is derived from the Navier-Stokes equations for a
viscous flow (Munoz et al., 2013),

ITiso = —7 <Vv + (V)T — %I(V . v)) —(I(V -v), (2.47)

where 1 = pry = g is the shear viscosity and ¢ is the bulk viscosity. The former is re-
ferring to constant-volume shear deformations and the latter is corresponding to isotropic ex-
pansions/contractions. Note, that the bulk viscosity vanishes for an incompressible fluid flow
(Vv =0) or for an ideal monoatomic gas, which has no internal degrees of freedom if interpre-
ted as hard spheres interacting only through elastic collisions. Hence, the isotropic Navier-Stokes
viscosity implemented in AREPO by equation (2.47) assumes that ¢ = 0.

2.3.6. Micro-scale Instabilities

We can infer from equation (2.42) that an increasing magnetic field strength will yield a positive
pressure anisotropy and regions with a decreasing field strength will have a negative anisotro-
pic pressure, if the density is constant. Additionally, equation (2.44) shows that the pressure
anisotropy controls the rate of viscous dissipation down to the dissipation scale (order of Apgy,)
and thus affects the fluid dynamics at larger scales. Therefore, the Braginskii viscosity only
dissipates such velocity gradients that change the strength of the magnetic field. (Schekochihin
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and Cowley, 2007) The remaining motions not affecting B can in principle exist below the dissi-
pation scale with their fastest growing modes down to the Larmor scale (1; < Aygp), where they
act as micro-scale instabilities in a weakly magnetized, high-3 plasma. These rapidly growing
instabilities are not yet resolved in simulations modelling galaxy clusters since it would require
numerical resolutions ranging from several nano- to kilo-parsec scales and resolving ~ 10'? orders
of magnitude is numerically not achievable. Nevertheless, theoretical studies (Schekochihin et al.,
2008; Rosin et al., 2011) and particle-in-cell simulations (Kunz et al., 2014; St-Onge et al., 2020)
show that the micro-scale instabilities, namely the firehose and the mirror instability, act such
that they regulate the pressure anisotropy back to values within its stability boundaries. This is
also supported by direct solar wind observations (Chen et al., 2016). So, whenever Ap exceeds
certain thresholds (see e.g. Kunz et al. (2012)),
B? B2

< — <
4r ~PLTPI S g

(2.48)

the micro-scale firehose (left-hand side) and mirror (right-hand side) instability are triggered and
drive Ap to marginal stability, where they saturate. In other words, the pressure anisotropy (and
thus parallel viscosity) becomes unphysically large in weakly collisional, magnetized plasma fluid
simulations, if no micro-physical limits are implemented, which would account for isotropizing
the plasma to marginally stable levels. We describe both micro-instabilities schematically in
figure 2.3. It shows that if the magnetic field strength gets enhanced via stretched or compressed
field lines, the perpendicular pressure component becomes dominant, which excites the mirror
instability. On the other hand, if B decreases locally due to turbulent velocities, the parallel
pressure dominates and can trigger the firehose instability. We can rearrange the inequality
(2.48) in a way, that we get an expression, where the pressure anisotropy is pinned at marginal
stability (Kunz et al., 2011). Dividing by the total thermal pressure while considering the plasma

beta 3 = 87p/B? yields
N

where £ = —2 for the firehose instability or £ = 1 for the mirror instability.
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Figure 2.3.: Sketch how firehose and mirror instabilities emerge by bending the magnetic field lines. (adopted
from Schekochihin and Cowley (2007)).
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The limits from inequality (2.48) are also necessary to avoid unphysical results since the fluid
description of the ICM by Braginskii-MHD becomes invalid at scales < Apg, (Schekochihin
et al., 2005). Kunz et al. (2012) show that indeed the firehose fluctuations (which are resolved in
their simulations to some extent) grow fast enough to compensate the negative excess in pressure
anisotropy to retain marginal stability and self-consistently provide a lower bound to Ap. But the
mirror instability excited by Braginskii-MHD grows substantially slower than the kinetic mirror
fluctuations, meaning that positive pressure anisotropies are not efficiently regulated. Either
way, Kunz et al. (2012) find that in general both micro-scale instabilities do not grow as fast
using Braginskii-MHD as they would otherwise grow using kinetic theory since the fastest modes
can not be resolved. For example, in Braginskii-MHD the firehose instability has a maximum
growth rate occurring at k) H, whereas in kinetic theory the firehose instability actually has a
maximum growth rate occurring at kr;, where H is the thermal pressure scale height and r;
is the Larmor radius (see section 2.3.1). Therefore, the effects of Braginskii conductivity and
viscosity are probably overestimated by a factor H/r; ~1019-10'! (Schekochihin et al., 2008) in
a weakly collisional, magnetized plasma.
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2.4. AREPO

The cosmological MHD code AREPO (Springel, 2010) has been designed in order to combine
the advantages of both Lagrangian smoothed-particle hydrodynamics (SPH) methods and finite
volume Eulerian fixed Cartesian mesh codes. AREPO is based on a moving unstructered Voronoi
mesh, which allows for a quasi-Lagrangian description while retaining better numerical conver-
gence of Eulerian codes (Pakmor et al., 2016). In fact, AREPO uses a second-order accurate
Runge-Kutta method to estimate the fluxes at each time step. The Voronoi mesh is generated
from a set of points such that for each generator point there is a corresponding cell of volume
containing cell points which are closest to that generator point. This spatial discretization is
called Voronoi tessellation and uniquely constructs a mesh, which moves with the fluid flow and
is updated over time accordingly. A REPO solves the hyperbolic conservation laws on the moving
Voronoi mesh using a finite volume approach. In case of ideal MHD, the set of Euler equations
can be written in compact form by introducing a state vector of conserved quantities U and the
flux function F'(U) for the fluid as (Pakmor et al., 2011)

ou
] . F = 2.
5tV 0, (2.50)
where U and F(U) are given by
g ’va BB/4
B pv . pvv + P — 7
u=| " | FO)= By 0B , (2.51)
B pev + Pv — B(v - B) /4w

where P = pI + B%I /87 is the pressure tensor, p is the total thermal pressure and pe = %pv2 +
p/(y—1)+ B?/8x is the total energy density in Gaussian units. Note the notation and correlation
with continuity, momentum, induction and energy equations (2.33)-(2.36) of extended Braginskii-
MHD. The fluid state is computed by taking the cell averages of the conserved quantities U for
each cell by integrating the fluid over the finite volume V; of a cell i,

Qi= | UdV. (2.52)
Vi
yielding the total mass, momentum, energy and magnetic field strength contained in each cell.
The introduced fluxes F' are only valid for a static grid, but since AREPO uses a moving mesh,
the flux over a static interface has been added by an additional advection term Uw” owing for
the movement of the interface with velocity w (Pakmor et al., 2011). The geometry is illustrated
in figure 2.4. By using Gauss’ theorem we can get the rate of change in time of @Q; as

dQ;
det

=— /w [F(U) - Uw"|de, = =) Ai; Fyj, (2.53)
f J

where e,, is a normal vector of an interface between two Voronoi cells and w is the normal velocity
of this interface. e, and w describe the motion of the face, which is fully specified by the velocities
of the mesh-generating points of the two cells next to the interface (Springel, 2010). Note, that
in Eulerian codes w = 0 where the mesh becomes static. All the fluxes over an interface are
computed in the rest frame of the moving interface, which means that the interface velocity is
subtracted from the equations of motion. Only the relative velocity between the two Voronoi
cells enters the flux estimation and not the dynamical flow of the moving mesh. This has the
advantage that the flux solutions become Galilean-invariant, whereas in Eulerian methods using
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fixed Cartesian meshes the numerical truncation error grows with the fluid velocity (Springel,
2010). The Riemann problem is solved by using the approximative H LLD solver in case of ideal
MHD (Pakmor et al., 2011).

The right-hand side of equation (2.53) resembles the Euler equations in finite-volume form and
is derived by calculating the averaged flux across the interface between cells ¢ and j as

F,; = Aw/ F ]dAij, (2.54)

where A;; is the oriented area of the face between cells ¢ and j. The fluid state is then evolved
in time by discretization of equation (2.53) in time to finally yield (Springel, 2010)

Q (n+1) Q(n AtZAZ_]F n+1/2 (255)

where Fij is a time-averaged approximation of the true flux Fj;. The superscript (n) is denoting
the state of the system at time step n.

Furthermore, the evolving magnetic field has to fulfill the constraint V- B = 0 to stay
divergence-free. However, as the moving mesh is spatially discretized, numerical errors can
significantly amplify the magnetic field and lead to unphysical results (Pakmor and Springel,
2013). Hence, AREPO adopts the divergence-cleaning method by Powell (Powell et al., 1999),
where a passive advection term of the flow of the magnetic field is added to the Euler equations.
This method has been implemented into the code by Pakmor and Springel (2013), where the
divergence of the magnetic field in a cell ¢ is then calculated as

V- B Z Bface enAface, (256)

faces

where By, is the magnetic field strength on the interface and V; is the volume of the cell.

There are numerous other features implemented into AREPO to account for the novelty of
having a moving mesh and we refer to Springel (2010) and Weinberger et al. (2020) for further
details. In thesis we describe only those special treatments that we actually have included in
our simulations in section 3.1, including i.e. the mesh regularization, de-/refinement criteria and

boundary conditions.

Figure 2.4.: Sketch showing the geometry of the flux calculation. An unsplit scheme is used where the flux across
each face is estimated based on a one-dimensional Riemann problem. The fluid state is expressed
in a frame which moves with the normal velocity w of the face, and is aligned with it. Taken from
(Springel, 2010).
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2.4.1. Braginskii Module

Braginskii viscosity is numerically implemented into the moving-mesh code AREPO by Berlok
et al. (2019) as a subsequent module to already existing extensions to non-ideal MHD physics like
isotropic viscosity (Mufioz et al., 2013) and anisotropic heat conduction (Kannan et al., 2016).
Operator splitting is used to solve the equations of motion (2.33)-(2.36), which means that
ARFEPOQO internally alternates between a MHD time step Atypp and a Braginskii viscosity time
step Atprag. Since the viscosity tensor IT only enters the momentum and the energy equation
(see section 2.3.5), only such viscous terms need to be solved by the algorithm, which reduce to

ov
— _V.-II 2.
o, Vv 11, (2.57)
Oe
— V.- (II- 2.
P =~V (I -w), (2:59)

while the density and the magnetic field are kept constant during the Braginskii time step. In
order to solve equations (2.57) and (2.58) in AREPO, Berlok et al. (2019) define a local coordinate
system with basis vectors e, e,, and e, at each interface between two Voronoi cells for the non-
trivial spatial discretization on a moving mesh. Additionally, both equations can be rewritten
by taking the volume average over a cell of volume V', such that

——/ VTV = —~ [ T-enda, (2.59)
V- Jav
1
——/ V. (Il -v)dV=—-= (IT-v) - e,dA, (2.60)
V- Jov

where the surface 1ntegra1s on the right-hand side are derived by applying the divergence theorem
with 9V as the surface of the volume and dA as an infinitesimal area. e, is the unit vector of
the local coordinate system and is orientated to be the normal to the interface between the two
Voronoi cells. The right-hand side of both equations (2.59) and (2.60) is then approximated as
a discrete sum of fluxes through the faces of the Voronoi cell (Berlok et al., 2019). Thereby, a
quantity ¢ or its derivative is estimated at each interface of a Voronoi cell by taking a weighted
harmonic mean of its values at all the corners of this cell,

-1
a¢face _ (Z a(bz/ax) 7 (261)

where wj is the weight of the corner 4. In turn, the gradients 0¢; /0z at each corner are estimated

with the corresponding values for neighbouring cells by taking i.e. a least-squares fit of the values
of the four adjacent cell centers (Pakmor et al., 2016).

The anisotropic fluxes for all Voronoi cells are calculated at each Braginskii time step Atprag,
which is constrained for an explicit update of viscosity as (Berlok et al., 2019)

(Az)?
2dV|| ’

Alprag < C (2.62)

where Az = V/3 is the minimum size of the cells, d = 3 is the number of spatial dimensions
being solved, v| = p/p is the viscosity coefficient and C' = 0.3 is the Courant number, which is
defined as the ratio of the applied time step to the allowed time step (Courant et al., 1928). We
can compare the Braginskii time step with the MHD time step constraint given by (Springel,
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2010)

A
Atyp < C-——, (2.63)

Umax

where vyax 18 the maximum signal speed, which is the sum of the adiabatic sound speed and the
Alfvén speed, ergo effectively the flow velocity. Since Atymp oc Az and Atgrag o (Ax)?, we can
infer that the MHD time step constraint will generally satisfy Atypp > Atprag. The different
scalings become especially crucial for highly resolved simulations, where the explicit Braginskii
time step becomes very small. This makes the numerical computations very expensive, because
the operator splitting requires that Atyup = Afprag in order to advance in time. Therefore,
Berlok et al. (2019) implemented a second-order accurate super-time-stepping (STS) method for
Braginskii viscosity. STS accelerates the Braginskii viscosity update such that the computational

3/2 However, we have decided for another approach instead

cost scales down to Atgrg o (Ax)
by using sub-cycled time steps, which means that the Braginskii viscosity is updated n times per
global MHD time step: Atypap = 1 X Atprag. Using sub-cycling has the advantage that it works
with local time stepping and is thus faster than than STS in our cluster simulations. We have
chosen the number of sub-cycles to be n = 10, which is the same as in Kunz et al. (2012). By
restricting sub-cycling properly, we avoid that changes in the system between two consecutive
global MHD time steps become too large, because Braginskii viscosity has been updated too many

times, which would cause unphysical behaviour following through the remaining time steps.
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Chapter 3.

Methods

In this work we intentionally focus on the Braginskii-MHD effects in an isothermal cluster at-
mosphere. The significance of pressure anisotropy can be better understood if testing certain
parameters in our simulations is based on a controllable setup. Our first set of simulations, in-
troducing a uniform horizontal magnetic field, aims to reproduce the findings of Dong and Stone
(2009), this time applying adaptive mesh refinement (AMR) on a moving Voronoi mesh. The
second set of simulations is based on the same simplisitc setup as the first, now enhanced by
introducing a turbulent magnetic field. Having different levels of complexity allows us to better
assess the qualitative impact of anisotropic viscosity at each step while advancing to more and
more realistic cluster properties.

3.1. Model Setup

In order to numerically study the evolution and stability of buoyantly rising bubbles in the ICM,
we model an idealized, isothermal, relaxed galaxy cluster core. To investigate the effects of
Braginskii viscosity, some limitations need to be established as a compromise between a realistic
environment and a manageable setup where the underlying physics are more comprehensible.
This allows us to isolate the results of Braginskii-MHD in our simulations. Thereby, we follow
the cluster setup by Reynolds et al. (2005) and Dong and Stone (2009). The ICM atmosphere is
given a density profile described by a beta-profile using § = 1/2 as its index,

_%5

o(r) = o [1+ (—0>] | (3.1)

Assuming that the ICM stays in hydrostatic equilibrium, the gravitational potential of the dark
matter is fixed by Vp = -pV®. Further assuming spherical symmetry and using p = ¢2p (see
section 2.1.3), we can rewrite equation (2.6) by plugging in the derivative of equation (3.1) to

7
1 o
Cg_ 3p20 1+ <L> = — = -g,
p 2rgr 70 dr
IS T

3 5 r/
= ———dr' = [ dP.
Y

0 0

Finally, by performing the integral we get an expression for the gravitational potential for our
cluster model (Reynolds et al., 2005)
O\ 2
1 — . 3.2
+(£) ] (32)

The gravitational forces (dominated by dark matter) acting on each grid cell in our ICs are fixed

yield

T

O(r) = §c2 log (7"2 + 7"8)

3 9
=16 :chlog

0

by using this analytical potential throughout the simulations presented in table 3.3.
We choose units of mass, length and velocity such that po = 1, 1o = 1 and vy = 1 in the
code. Our simulations have been run in a cubic box that spans a spatial domain of 67y in
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each dimension. The origin of the gravitational potential coincides with the center of the box
at r/ro = V22 +y% + 22 = 0. We consider an ideal gas with adiabatic equation of state with
v = 5/3. The initially static cluster atmosphere gets carved out by two underdense spherical
regions, symmetrically aligned along the vertical y-axis. Such a bubble is displaced from the
center of the dark matter potential by a distance R = 0.3ry with radius rn,, = 0.25r9 and
density ppup = 0.01 pg. Hence, our ratio R/rpy, = 1.2 is in good agreement with statistical data
from observations (Rafferty et al., 2006). The bubble profile smoothly changes from the reduced
values inside the bubbles to the quiescent ambient gas for all number of cells NV via an analytical
profile given by

1 i — Thub .
Pi = Pbub + 5 <1 + tanh <%>> (Pi — pbub) Vie [O, N), (3.3)
where r; = ||r; — Tpup| is the distance of the i-th grid cell to the closest bubble center, rp,, =

|”bub || is the bubble radius, a is a smoothing parameter and p; is the density of the i-th cell.
Local pressure equilibrium is maintained by setting the initial pressure of the bubbles to the
initial pressure of the ICM at that radius, meaning that the bubbles become hotter than their
surroundings by a factor of Ty, = 100T,mp. This results in an ICM with constant internal
energy. The radially averaged profiles for density, thermal pressure and temperature are plotted

in figure 3.1.
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Figure 3.1.: Radial profiles of our ICs for a uniform magnetic field at t/to = 0. Plotted from left to right are
the volume-weighted density p, the volume-weighted thermal pressure P, and the mass-weighted
temperature 7. The artificially carved out low-density, hot bubbles are set in pressure equilibrium
and can be clearly seen centered at r = £0.3 7o.

The evolution of the bubbles is computed by solving the equations of three-dimensional
Braginskii-MHD (see section 2.3.5) using the moving-mesh code AREPO (Springel, 2010), see
section 2.4 for implementation details.

We are going to relate our code units to quantities of real clusters in order to be able to assess
our findings with physical meaning and to make the following in analysis more quantitative.
Therefore, we adopt fiducial values for length, mass and time following Dong and Stone (2009).
We fix the unit of length to ryp = 80kpc being equivalent to the core radius, the unit of density
to a proton number density of pg = 0.03m,, cm™ and the unit of velocity to vy = 800 km s
being equivalent to the isothermal sound speed. Having fixed these units already implies setting
the units of mass and time. Additionally, physical units allow us to derive general characteristics
of our cluster model like the virial mass My, virial radius rogg, the sound crossing time tg. or
the thermal pressure scale height H. Those are presented in table 3.1. A core radius of 80 kpc
was chosen as a compromise between staying close to the setup by Dong and Stone (2009) while
initializing the bubble radius to 20 kpc to be comparable with the jet-inflated bubbles simulated
by Ehlert et al. (2018). Other studies with numerical simulations of buoyantly rising bubbles
based on an isothermal (double) beta profile use core radii with i.e. 200kpc (Briiggen and Kaiser,
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2001), 50kpc (O’Neill and Jones, 2010) or 100 kpc (Gilkis and Soker, 2012).

The total mass of a cluster within the virial radius can be calculated using the expression for
M (r) derived from hydrostatic equilibrium in equation (2.7). There, the gradient in temperature
vanishes assuming an isothermal cluster profile. Since the gas density is well described by a (-
model, we can simply derive d1ln py(r)/dr = —38r/(r? +r3) and plug in r = ragg to get the total
mass enclosed within the viral radius:

(ra00/70)
1+ (ra00/70)*

3BksTr00
Gumy,

M(Tgoo) = (34)
In section 2.1.4 the virial radius 909 has been defined as the radius, within the mean gas density
equals 200 times the critical density of the universe, ergo M (r200)/V (r200) = 200 X p., where p,
is given by p. = 3H8/87TG ~ 1.88 x 1072*h2gcm™3. Here, Hy is the Hubble time and A is the
Hubble parameter. With this relation we can calculate rogg as

3pkpT 3
=4/200 — — .
7200 \/ Pe Gpm, 4 To

The only term remaining unknown in equations (3.4) and (3.5) is the temperature, which can

(3.5)

be expressed as kpT = vium, = 3.34keV. The resulting quantities describing a pseudo-realistic
galaxy cluster are shown in table 3.1. They are in agreement with the properties which have
been discussed throughout chapter 2. The simulations presented in this thesis span a cubic box
with size (480 kpc)? and the target mass of the cells of the ambient gas is about 6 x 10° M. For
our fiducial run the numerical resolution of the cells inside the bubble region is about 0.5 kpc,
which is about equal to the mean free path of the ions Ajg, we estimated in equation (2.21). The
latter in turn is comparable to the viscous dissipation scale lyise ~ 1kpc for a Reynolds number
of Re = 50 (see section 2.3.3). Thus, we have established the following relation,

1/3
V:ca{get,o ~ )‘mfp ~ lyise (36)
70 80 kpc
0 0.03m, =5 x 100 gem™
v 800km st
to 98 Myr tse(7200) 1.8 Gyr
domain space (480 kpe)? = (67¢)> tsc(370) 0.3 Gyr
. oo 130 Myr
resolution number of cells / Y 1.8 Gur
highest res 7 x 107 ;001 - = Y e
fiducial res 2 x 107 0 Qg T
lower res 7 % 106 0.01 1.98 x 1028 (:m2 s_1 50
73 > 0.001 1.98 x 10°° cm~ s 500
Viarget,0 0.48kpe =6 x 1077 rg Spitzer | 4.6 x 1028 cm?s7! 420
Mtarget,0 5.9 x 10° Mg I} | B Einj
kgTy 3.34keV = 3.88 x 10" K 106 0.1uG -
7200 1.5 Mpc 100 9.0 uG 37.5  kpe!
i4
M(< Tgoo) 3.3 x 10** Mg
H 107 kpc Table 3.2.: Fixing physical parameters that characterize
g(ro) 2 x 108 cms2 the ICM, continued.

Table 3.1.: Fixing physical parameters that characterize

the ICM.

We study two different initial magnetic field configurations, firstly a uniform horizontal field

B = (By,0,0) and secondly a turbulent field with constant plasma beta. For each field geometry



3.1. Model Setup 38

we study two different magnetic field strengths, one with a weak field given by 3 = 10 and one
with a strong field given by S = 100. Calling the latter setup strong might be a bit misleading
since the magnetic pressure is still 100 times weaker than the thermal pressure, but it is convenient
to do so in order to clearly distinguish both. The plasma beta can be converted into physical field
strength ||B]| in terms of Gauss using equation (2.25), which are presented in table 3.2. Field
strengths ranging between 0.1 — 9 uG are representing reasonable cluster properties (Carilli and
Taylor, 2002). For the turbulent magnetic field an injection scale is introduced, kinj, such that
the coherence length is of order the bubble size, such that 2m/ki,; ~ L. This is quite important
since whether the magnetic fields is able to stabilize a buoyantly rising bubble depends on the
coherence length of the field (Ruszkowski et al., 2007). They find that if the coherence length
is smaller than the bubble radius, no useful draping layer can form at the bubble front and the
bubble is getting dissolved by KHIs and RTTs.

Furthermore, we study two different values for the anisotropic diffusion coefficient of Braginskii
viscosity, which are also shown in table 3.2. Following Dong and Stone (2009), the dynamic
viscosity is fixed as a diffusion constant pu = v (see section 2.3.4) to give a Reynolds number
Re = wvoropo/2v9 = 50, where in code units vg = rg = pg = 1 such that vy = 0.01. Here, the
characteristic velocity is vg/2. Using the same value for v allows for direct comparison later on.
The physical units of this diffusion constant are then simply achieved by an unit conversion as
v| = vo(r§/to). For our fiducial simulations we take 19 = 0.01, which yields v ~ 2x10% cm?s7".
It is insightful to compare the Reynolds number of our isothermal setup to the Reynolds number
of a CC having the Spitzer value of viscosity. The temperature dependent Spitzer value can be

derived from equation (2.30),

L 22x107P (T 200 5
I InA T()

where we substitute

() - e oo,

which yields v ~ 1.4 — 7.8 x 10?® cm?s™! at the very cluster center (r/rg = 0) and at the outer
radii (r/ro = 3), respectively. From this we can estimate the Spitzer Reynolds number with
quantities in accordance with our presented setup at the cluster core:

r v, =v9/2\ (L =rg no Ty -5/2
Reg, | — = 0] ~ 720 < ) 3.7
Csp (ro > ( 400 km /s > (80 kpc> 0.03cm-3 (3.88 x 10TK (37)

Looking at radii further out with lower density, the cluster atmosphere becomes less turbulent

and the Reynolds number decreases accordingly down to Reg, (/79 = 3) =~ 130, which implies a
naive mean Reynolds number of Reg, ~ 420. Our estimated range of Reynolds numbers inferred
from Spitzer viscosity is not in good agreement with estimates of Reynolds et al. (2005); Dong
and Stone (2009) modelling the hot bubble gas for the Perseus cluster core region,

vy, L n T -5/2
Re ~ 62 ( ) , 3.8
¢ (390km/s> (20kpc> 0.03 cm-3 (5.81 % 107 K> (38)

neither with estimates of Rosin et al. (2011) modelling the plasma in the core of Hydra A,

-1 -1
~ YL L Uth )\mfp
Re ~ 60 <250 km/s) <6.5 kpc> <700km/s> <0-04kpc> ) (3.9)
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nor with the estimate we derived based on recent observational data from Hitomi in equation
(2.32). However, the Reynolds number varies considerably i.e. with the choosen length scale
and therefore with the set of fixed units. So for instance, if we would just double the initial
temperature, we would get a new mean Spitzer Reynolds number of Reg, ~ 75 according to
equation (3.7), which is already in good agreement with the above estimates of other studies.

We study the results of a set of simulations listed in table 3.3. The fiducial run is highlighted in
boldface, which runs a model using a uniform horizontal magnetic field throughout the domain,
initially with a very weak magnetic field strength of 3 = 105 and in turn a reasonable strong
(compared to the Spitzer value) anisotropic viscosity coefficient of vy = 1072, which results in an
ICM about 8 times as viscous as the mean Spitzer value. We have also run a similar simulation
with the same magnetic field configuration, but with a ten times smaller viscosity coefficient,
vp = 1073, yielding an ICM which is about ~ 80% as viscous as the mean Spitzer value.

Label B-field I} 0 Re
hydro
xB6mhd Horizontal le6
xB2mhd Horizontal 100
tB2mhd Turbulent 100
xB6NN2 | Horizontal | 1e6 le-2 50
xB6N3 Horizontal le6 le-3 500
xB6N2lim | Horizontal le6 | 1le-2 lim | 50
xB6N2iso | Horizontal le6 | Iso le-2 | 50
xB6N3iso | Horizontal le6 | Iso 1le-3 | 500
xB2N2 Horizontal 100 le-2 50
xB2N2lim | Horizontal 100 | 1le-2 lim | 50
xB2N2iso | Horizontal 100 | Iso le-2 | 50
tB2N2 Turbulent 100 le-2 50
tB2N3 Turbulent 100 le-3 500
tB2N2lim Turbulent 100 | 1e-2 lim | 50
tB2N2iso Turbulent 100 | Iso 1le-2 | 50

Table 3.3.: Parameter study of the simulations presented in this thesis. The first letter of each label indicates the
magnetic field geometry: uniformly, horizontally aligned (x) or turbulent (t). The second letter refers
to the magnetic field strength: weak, 8 = 10° (B6) or strong, 8 = 10? (B2). The third letter refers to
the viscosity coefficient: strong, vy = 1072 (N2) or weak, vp = 107 (N3). The last syllable indicates
whether the Braginskii viscosity is limited (lim) or isotropic (iso).

3.1.1. Magnetic Field Configuration

The first magnetic field configuration simply contains a field horizontally aligned (z-direction)
throughout the domain (within both the bubbles and the atmosphere), which sets field lines
initially perpendicular to the (y-)direction of the rising bubbles. It is expected that this setup
shows a more coherent bubble morphology over time if anisotropic viscosity is included. This is
expected because Braginskii viscosity suppresses RTIT and KHI along the field lines, thus having
Braginskii-MHD should show less instability at the bubble surface in the x-y plane, parallel
to the field. For the strong field simulations the magnetic field strength scales with density as
B(r) = B(0)(p(r)/p(0))"/? as studies suggest (see section 2.3.3). This means that the ratio of
gas to magnetic pressures, 3 = 87 Py, /B?, is kept constant with height away from the cluster
center. Hence, the ambient magnetic field strength generally decreases outwards in the ICM.
The second magnetic field configuration aims for a more realistic approach in modelling the
ICM. Here, we generate a Gaussian-distributed, turbulent magnetic field in accordance with the
procedure used in Ehlert et al. (2018). We will only describe its most important aspects in this
thesis. For further details, we refer to the Appendices of Ehlert et al. (2018) and Ruszkowski
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et al. (2007). The initial magnetic field B is Fourier transformed based on a Cartesian mesh,
while meeting some fundamental constrains. B must be divergence-free, such that V - B = 0.
Each of the three field components B; independently follows a one-dimensional power spectrum

Pg, (k) of the form
k‘2, k< kin'
PBl(k) x { k—5/3, kinj Sjk‘ (310)

where the power spectrum is defined by Pp, (k) oc k?||B;(k)||? with the Fourier transform of
each field component Bz(k‘) So, B follows a random white noise power spectrum on the largest
scales for wave numbers smaller than the injection scale and a Kolmogorov spectrum in the
inertial range for k > kinj. The average field strength is zero ((B) = 0). In order to maintain a
constant magnetic-to-thermal pressure ratio, B? is scaled at each radius accordingly. The result
is plotted in the left panel of figure 3.2. The power spectrum governs the entire computational
domain, meaning that also the bubbles contains tangled magnetic field lines instead of a more
realistic toroidal configuration. However, the bubble region is magnetically isolated, which can
be seen in the right panel of figure 3.2. After creating the turbulent magnetic field, the Cartesian
field components are then interpolated onto the adaptive Voronoi mesh of our initial conditions.
Therefore, all cell sizes of the Cartesian mesh need to be smaller than the smallest cell size of
our IC at any point. Since the spatial domain is quite large, it is not computationally feasible
to maintain the highest resolution of the smallest cell for the entire simulation box. Hence, it
becomes necessary to combine multiple (in our case two) nested meshes with adaptive mesh
resolution in order to be able to perform the individual Fourier transformations.

To ensure pressure equilibrium, the temperature is rescaled adopting temperature fluctuations
of the form nkpdT = —§B?/8m. The new IC is then relaxed using Lloyd’s algorithm (see section
3.2.1). In fact, relaxing the IC damps some remaining magnetic divergences, but at the same time
leads to a reduction of the amplitude of the magnetic field. Although we set the initial velocities
to zero, a small random velocity field will be generated soon after the simulation starts due to
the Lorentz force of the tangled magnetic field (Yang and Reynolds, 2016b). These induced
turbulent gas motions should gradually dissipate over time, thereby decaying magnetic power.
Hence, the temperature and B? of our IC are rescaled again to the desired magnetic-to-thermal
pressure ratio 47!, We show the final radial profiles of the turbulent configuration in figure 3.3.
The small bump at r/ro = 1.8 occurs because there is the transition area from the first mesh to
the second coarser nested mesh.

3.2. Initial Conditions

3.2.1. Mesh Relaxation

We relax the meshes of our ICs by using Lloyd’s method (Lloyd, 1982) implemented in AREPO.
The algorithm iteratively constructs a centroidal Voronoi tessellation starting from our Cartesian-
like tessellation. This is achieved by moving the mesh-generating points to the center-of-masses of
their cells until both coincide after reconstructing the Voronoi tessellation. After some iterations
the initial cubic cells are relaxed towards a honeycomb-like configuration, while remaining the
same mass density profile, which is shown in figure 3.4. This mesh regularization has been
applied as it creates a non-degenerate tessellation, which is computationally more efficient in
AREPOQO and it smoothes some of the remaining magnetic divergences. Having cells where the
center-of-mass stays close to the mesh-generating point minimizes numerical errors and limits
the rate at which mesh faces turn their orientation during mesh motion (Springel, 2010). Hence,
an unrelaxed mesh would slow down the numerical computation significantly.
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Figure 3.2.: Projected slices of the z-y midplane for our model tB2N2 at t/ty = 0 with mean magnetic field
strength ||B|| = 0.5 Bo. Left: The initial z-component of the turbulent magnetic field in units of
By =18 uG for 8 =100 . The panel spans a spatial domain corresponding to dimensions z € [+3 o]
and y € [£3ro] Right: Radial component of the turbulent magnetic field, || B,|| = r - B/||r|| in units
of Bo, where the radial origin lies at the center of the upper bubble and the magnetic isolation of
the bubble region is clearly visible. The panel spans a spatial domain corresponding to dimensions
x € [£1.57r0] and y € [0,3ro]. The thin projections in z-direction have width dr = 0.066 7o centered
at z = 0.
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Figure 3.3.: Mass-weighted radial profiles of the initial turbulent magnetic field after rescaling and relaxing the
mesh but before setting the bubbles. Left: On average constant magnetic-to-thermal pressure ratio
B! throughout the cluster. Middle: Amplitude of the magnetic field ||B| in units of Bo = 18 uG
with dependence on density such that B o pl/ 2. Right: On average constant internal energy (ergo
isothermal temperature) throughout the cluster.
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Figure 3.4.: Highly zoomed-in slices of the cluster core with color-coded density in units of po. Left: The initial

non-relaxed grid at t/to = 0 consists of nearly perfect cubic cells, whose perpendicular edges would be
numerically challenging in AREPO. Right: After applying the Lloyd’s algorithm for some time (¢/tq =
0.1), the relaxed mesh looks much more optimized while its Voronoi cells try to retain a honeycomb-
like shape. Both slices span a spatial domain corresponding to dimensions x € [-0.170,0.17¢] and
BS [—0.1 r0,0.1 7“0].
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3.2.2. Passive Scalars and Refinement Criteria

In order to be able to identify the bubble during its evolution, a passive scalar, Xpp, is used. It
traces the fluid motions by recording the mass fraction of the bubble material in each Voronoi cell.
Xpup 18 initially set to one witihin the bubble region and zero everywhere else in the simulation
domain such that X, = 1 — Xpup. The transition layer between bubble and ambient gas is
given a smoothly varying analytical profile for all number of grid cells N,

1 _
Xoubi = 5 (1 + tanh (—M>> Vi€ [0,N], (3.11)
a
where r; = ||r; — Tpup]| is the distance of the i-th grid cell to the closest bubble center, rp,, =

|”bub|| is the bubble radius and a is a smoothing parameter. We have tested several values
for a of otherwise unchanged simulations and could infer that our ICs are quite sensitive to
this parameter (see figure A.1 in the appendix). It kind of determines how well the density
gradients at the bubble surface are resolved. From this small parameter study we conclude
that a = 0.17py, has yielded the best results in terms of Xy, mixing. As the bubble evolves,
subsequent advection and mixing ensure that cells influenced by the rising bubble can then have
fractions of the initial passive scalar values. We treat a Voronoi cell as bubble material if the
tracer mass fraction exceeds a certain threshold, Xy, > 1073, which is plotted in the left panel
of figure 3.5. Throughout this thesis, we refer to a mass fraction of passive scalars and passive
tracers interchangeably.

F 101

Xbub
volume V/rZ

Figure 3.5.: Slices of the x-y midplane showing the evolved state of the buoyantly rising bubbles at t/tq = 4 for the
hydrodynamical setup of our highest resolution. Both the passive scalars (left) and the volume of the
grid cells (right) are illustrating that the analysis of the bubbles can be nicely traced while minimizing
the computational costs by only using higher resolution where it is most needed numerically. Both
slices span a spatial domain corresponding to dimensions x € [-379,379] and y € [-370,370].

Different refinement criteria for the mesh are used to ensure we resolve the relevant bubble
physics on the one hand and to make the computation much more efficient on the other hand. In
the default case, the mass of each cell is maintained at a certain specified target mass Mmgarget,0
(Vogelsberger et al., 2012). If a cell becomes a factor of two less massive than this threshold, this
cell will be derefined (and vice versa). We use the standard criterion in cells belonging to the
ambient gas. This creates large Voronoi cells at the cluster outskirts, where the density decreases
considerably, which minimizes the computational cost. However, we do not want to have the
same refinement criterion for the low-density bubble cells. Here, the default refinement would
result in very poorly resolved bubble dynamics. Therefore, we use a volume-based refinement
criterion for grid cells, whose tracer mass fraction satisfies Xy, > 1073, which is plotted in the
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right panel of figure 3.5. If a cell’s volume exceeds two times a fixed target volume Viarget.o,
this cell gets refined. Due to the high density contrast (ppup/pPamb~1072), the boundary layer
between bubble and ambient cells needs a third refinement criterion, which is based on the

1/3HVpH > 0.5p;. The latter two criteria replace the

steepness of the density gradient ||Vpl|| as V,
default refinement criterion whenever applicable (see Weinberger et al. (2017) for details). To
prevent runaway refinement, a minimum cell volume Vi, is used to restrict each cell’s volume
t0 Vinin = Viarget,0/2. The values of myarget,0 and Viarget,0 are summarized in table 3.1 for our

simulations with fiducial resolution.

3.2.3. Boundary Conditions

Instead of simple periodic or reflective boundary conditions, we use in-/outflow boundaries at
radii 7/rg 2 3. In AREPO, these special boundary conditions requires using two types of
boundary cells: fluid and solid. The solid boundary cells are implemented into the Voronoi mesh
of the spatial domain as a thin spherical shell with width dr at radii 3rg —dr/2 < r < 3rg+dr/2.
The fluid cells are built up of boundary cells at radii greater than those of the solid boundary
layer. Throughout this thesis, we will refer to grid cells belonging to the spatial domain if they
are having radii smaller than r/rq < 3 for simplicity. We have chosen this type of boundary
conditions in order to better maintain hydrostatic equilibrium, which we have had trouble with
establishing otherwise (see also section 4.5). Furthermore, using in-/outflow boundaries has the
advantage that the fluid state of the fluxes is not simply mirrored at the boundary interface but
replaced with a predefined state describing the in-/outflow conditions (Weinberger et al., 2020).
At the solid state, i.e. the vertex velocities are set to zero to guarantee a fixed layer of cells. Both
states ensure that on the one hand no de-/refinement criterion will be checked and on the other
hand no physical fluxes will be calculated for these cells. The number of cells belonging to our
boundary region constitute for ~ 27% of the total number of cells of the entire cubic box. This
makes our ICs numerically much more efficient since splitting and merging of cells in a Voronoi
mesh is computationally quite costly and we avoid unnecessary computational time on solving
fluxes for cells, which have no physical relevance.
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Chapter 4.

Analysis

In this chapter we analyse the simulations of our models summarized in table 3.3. We start
with our fiducial run x B6N2, where we present its bubble evolution in detail by analysing the
global morphology in terms of emerging RTI and KHI in section 4.1. Additionally, we discuss
its energy contents, the mixing efficiency and how comparable the cooling and heating rates are.
Next, we proceed by showing the results of the other simulations we have run. Basically after
discussing variations of special interest for the model having uniform magnetic field lines and a
very high plasma beta in section 4.2, we move on to the next case where we keep the uniform
alignment but increase the magnetic pressure to satisfy g = 100. This corresponds to analysing
run xB2N2 in section 4.3. Afterwards, we present model tB2N2 in section 4.4, where 5 = 100
is kept but now a turbulent magnetic field is introduced. In the last section 4.5, we perform a
couple of sanity checks and a convergence test in order to verify numerical reliability.

4.1. Bubble Evolution

The general evolution of the rising bubble is described in this section for the fiducial run z B6N2
comprising a very weak magnetic field with 3 = 106, horizontally aligned field lines, and a relati-
vely high viscosity coefficient with v = 10-2 without limiting the anisotropic pressure. The figure
4.1 shows, from left to right, the tracer mass fraction Xy, the density p, the velocity in units
of the sound speed c;, the kinetic-to-thermal pressure ratio Xy, = Pyin/FPin and the magnetic-
to-thermal pressure ratio 3-' = Pg/Py,. As pointed out in section 2.3.2, the cluster atmosphere
is stable against convection according to the Schwarzschild criterion, but introducing an under-
dense bubble close to the center of the gravitational potential will not keep the system static as
the bubble represents a high entropy concentration with dS/dr < 0 at these radii. Furthermore,
the Schwarzschild criterion only applies to small disturbances of a given equilibrium, which is not
the case for an underdense bubble of several kiloparsecs in size. So instead, a simpler argument
can be given considering the buoyancy force ||Fhuoy|| = —9gVbub(Pamb — pPbub). Since we have
Pamb > Pbub the buoyancy force is stronger than the gravitational force || Fyrqo|| = gVihubpbub and
the bubble starts rising buoyantly upwards the cluster potential and ambient gas starts strea-
ming inwards to fill its wake. Thereby, the bubble will adiabatically expand to maintain pressure
equilibrium with its surroundings. The shear of velocity flow, which is the velocity difference
between bubble and ambient ICM, induces the KHI along the edges of the bubble since the rise
velocity is subsonic, v/vg < 1. The motions via KHI are evident in quickly forming vortices.
In addition, at the top of the bubble the RTI emerges by tearing the bubble front apart. Both
instabilities can already be noticed at t/to = 4, which later on highly distort the bubble interface.
Those lead to turbulent mixing of the bubble material with the surrounding cluster gas until all
of it will be diffused into the ICM. The perturbations induced by instabilities grow exponentially
with time such that the amplitude A o exp(¢/7). The time-scales for hydrodynamical RTI and
KHI, gy and 7y respectively, are given by Chandrasekhar (1981) or by taking the inverse of it
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growth rates, e.g. from equation (4.15) for the KHI:

__ Pbub ~+ Pamb 1

TKH =
2\/ Pbub Pamb Avk
0.5 (4.1)
__ | Pbub + Pamb 1
TRT = | 7.
Pbub — Pamb gk

where pamp 18 the density of the ambient gas, ppup is the density of the bubble, Aw is the
difference of the shearing velocities at the interface, ¢ is the gravitational acceleration and k is
the wavenumber of the perturbed length scale. The bubble is expected to survive until < 7 and
starting to dissolve after that. Aw is sufficiently close to the terminal upward velocity vy, which
we derived in section 2.2.3 by balancing the drag force with the buoyant force. O’Neill et al.
(2009) show that equation (2.18) can be written to sufficient accuracy as vy = cg0v/Tbub/H,
where ¢ o is the sound speed at the cluster center, ry,,, is the bubble radius and H is the scale
height. They also study the evolution of buoyant bubbles in a three-dimensional MHD simulation
with artificial bubbles. Applying the initial bubble conditions from O’Neill et al. (2009) into
their simplified expression for the terminal velocity yields vy &~ 0.4 ¢;. Using the relevant values
presented in this work (see section 3.1) gives vy &~ 0.44¢s ~ Av. If we plug-in typical values
for our fiducial simulation into equation (4.1), such that ppup/pamp ~ 1072, Av ~ 0.44 ¢, and
g ~ 3 x 103 kpcMyr 2, we get the following time-scales acting on length scales comparable to
the bubble size:
i ~ 280 (k 20 kpe) ™! Myr L9
TR ~ 77 (k 20kpc) %5 Myr (4.2)
Based on the time-scales the RTI should evolve ~3.5 times faster than the KHI. If we are
interested in wavelengths of perturbations close to the size of the bubble, i.e. the KHI should
emerge after ~300 Myr ~ 3t/ty. By looking at our hydrodynamical runs in figure 4.24 (at the
end of this chapter) we find that this is approximately the case as the bubbles are already
disrupted into two relatively symmetrical eddies at ¢/ty = 4. In fact, the RTT induces circulatory
motions within the bubbles, which then get further mixed by secondary KHI along the contact
discontinuity. The bubbles show a high level of vorticity and transform into a torus-like structure.
This is in accordance with previous findings of simulations with an unmagnetized and inviscid
cluster model (Reynolds et al., 2005; Gardini, 2007). The distorted bubbles do not resemble the
morphology of X-ray and radio observations of (ghost) cavities and our hydrodynamical model
can therefore be excluded from further discussion. However, generally e.g. changing the density
contrast or the way the bubble is inflated can substantially alter the outcome of hydrodynamical
simulations. That the fiducial run x B6/N2 shows suppressed instabilities in direct comparison is
related to the effects of viscosity on the buoyant evolution since stresses from the magnetic field
can be neglected. For instance, there are no profound, fully formed vortices visible at t/t) = 4 as
in the hydrodynamical case, but the bubble is still shredded in a complex manner, although with
much less vorticity in its wake. Therefore if the instabilities are not suppressed, the disruption
of the bubble occurs much earlier as the vortex flows disturb the central bubble region and push
material to either side of it as the bubble is moving upwards the cluster atmosphere. However,
the anisotropic viscosity suppresses instabilities only in the direction parallel to the magnetic field
lines (Dong and Stone, 2009; Suzuki et al., 2013; Berlok et al., 2019). Hence, we also examine the
effects on morphology in the y-z plane perpendicular to the field presented in figure 4.2. Here,
the bubble remains less coherent as in the -y plane and gets shredded into distinct pieces. This
results in stronger mixing at later times, where small scale structures develop. After a certain
time the bubble is not able to confine itself any longer as there is not any surface tension except
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for the very weak magnetic field. The bubble splits into two, while parallel to the field the
bubble stays more intact. These are clear indications of anisotropic suppression of RTT and KHI.
Note that it is ambiguous to define a disruption time of the bubble, which could for instance
just depend on the coherence of the bubble front or on the maximum energy deposition into the
ICM.

The fluid motions are tracked by the velocity vector field in the middle columns in figure
4.1. At early times the streamlines visualize how the initially static cluster gas starts to flow
inwards along the edges of the bubble towards its wake. At later times, t/tg = 8, the streamlines
signal a more turbulent flow, showing that the uplifted gas is being disintegrating into the ICM.
Looking at both of the outer columns, where the magnetic vector field is plotted, we see that the
initially uniform magnetic field lines get bended and dragged along with the rising bubble. As
described in section 2.3.2, the fluid is coupled to the magnetic field lines, which are advected with
the gas flow. Although the magnetic field is very weak with 8 = 10°, it gets locally amplified
(damped) where the field lines are getting compressed (stretched). This is shown in the last
column in figure 4.1, where the inverse 3 is plotted. After some time, the magnetic field strength
is being amplified by three orders of magnitude especially at the wake, tracing the rising bubble
upward the gravitational potential. Here the field lines get stretched the most, thus having the
highest magnetic tension forces. In addition, we see bending of field lines at the bubble front via
magnetic draping (Dursi and Pfrommer, 2008). But since the magnetic field is so weak, draping
effects are not strong enough to stabilize the bubble and suppress RTI. The fourth column shows
the kinetic-to-thermal pressure ratio, which is of order unity in the quiescent cluster atmosphere
and heavily enhanced for the bubble material, meaning that the bubble dynamics are kinetically
driven. The blue shell at the top of the panels looks like a shock front, but it is actually just the
boundary layer of our IC, which remains at the same location throughout the simulation (see
section 3.2.3). The same quantities are plotted in figure 4.2 for the projected y-z midplane. At
a first glance, they show basically the same picture besides the decomposing morphology of the
faster disrupted bubble. If we look for instance more carefully at ¢t/ty = 2 for Xy, and p, we
can infer that the bubble slices perpendicular to the uniformly magnetized ICM already show
signs of KHI starting to take place, whereas the parallel bubble slice at t/tg = 2 in figure 4.1
looks very symmetric, only modified by ram pressure. So Braginskii viscosity does suppress the
growth rates of KHIs, but not enough to prevent these macro-scale instabilities from emerging.
One detail is also worth mentioning. The trail the rising bubble left behind in its wake is no
longer bipolar due to the gas moving with the magnetic field and is probably not a projection
effect.
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Figure 4.1.: Projected slices of the x-y midplane parallel to the initially uniform magnetic field lines showing the
tracer mass fraction Xyyup, the density p, the velocity in units of the sound speed cs, the kinetic-to-
thermal pressure ratio Xyin = Piin/Pi and the magnetic-to-thermal pressure ratio 5! = Pp/Pu,
for our fiducial run B6/N2. Each panel spans a spatial domain corresponding to dimensions x €
[-1.57r0,1.570] and y € [0,379]. The thin projections in z-direction have width dr = 0.066 ro centered
at z = 0. For the tracer mass fraction and the magnetic-to-thermal pressure ratio, the streamlines
show the magnetic vector field. For the other three quantities the streamlines show the velocity vector
field. Each vector field is presented as a thin projection as well. The color-coding is logarithmically
scaled where the colorbar ticks are labeled in power of tens and linear otherwise. The colorbar is
fixed for the different times shown.
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Figure 4.2.: Same quantities as in figure 4.1, but now showing projected slices of the y-z midplane perpendicular
to the initially uniform magnetic field lines. Each panel spans a spatial domain corresponding to
dimensions z € [-1.579,1.57¢] and y € [0,3r0]. The thin projections in z-direction have width
dr = 0.066 ¢ centered at x = 0.

4.1.1. Energy Content

The evolution of the energy components for our fiducial run are shown in figure 4.3, where we
plot each mean energy density as its ratio to the total energy density, €iot = €xin + €tn + €3, which
is excluding €, in order to see the ratios in more detail as the amount of gravitational energy is
close the total energy. The gravitational energy is thus plotted separately in the fourth column
as the difference to its initial value Ae; = €4(t) — €4(0). We refer to an energy component as
an energy by taking Fyj, = fv pv2dV /2 for the kinetic energy, Ey, = fv pudV for the thermal
energy, EFp = fv B2dV/8r for the magnetic energy and E, = fv DpdV for the gravitational
potential energy. To get the mean energy densities we divide those energy terms by the total
volume V = [|, dV = 367 r{.

As previously discussed the magnetic energy gets enhanced at the rim of the bubble but is still
negligibly small compared to the other energy terms. Hence, the magnetic field is energetically
subdominant in the bulk of the ICM, especially since § = 105. The gravitational energy is
subtracted by the background potential energy. It can be seen that the bubble front is buoyantly
rising upwards the cluster potential, while the bubble interior is not experiencing a gravitational
net force. With time the bubble adiabatically expands and mixes with the ambient ICM. This
is slowing down the terminal speed of the lobe due to loss of momentum to the ambient gas and
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due to loss of buoyancy force because of the increased density. The thermal and kinetic energy
ratios look quite similar, although being inverse to each other. The kinetic fraction just provides
up to about 12% of the total energy, while contribution of thermal energy never falls below
88%. The kinetic energy contribution decreases with time throughout the bubble material. We
expect the kinetic energy being converted into thermal energy on time-scales that are resolved
by our simulation. This can not be clearly inferred by looking at the panels in figure 4.3, but
is becoming more evident by comparing the left and right subfigures of 4.4 though. For the
former, we plot the energies volume averaged over the entire spatial domain as a function of
time. We do the same for the latter, but restrict the energy averages to Voronoi cells identified
as bubble material. A cell is classified as a bubble cell if the tracer mass fraction exceeds a
certain threshold: Xp,p > 1073. We can see that after ¢ /to =~ 2 the bubble starts loosing kinetic
energy continuously while the thermal energy increases. This is an indication for heating, which
will be discussed later on in section 4.1.3. However, the conversion only appears in the bubble
itself since the bulk of the ICM stays relatively unaffected from a energetic point of view (see
figure 4.4).
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Figure 4.3.: Projected slices of the z-y midplane parallel to the initially uniform magnetic field lines for our
fiducial run £ B6/N2 showing from left to right the magnetic energy density, thermal energy density
and kinetic energy density normalised to the total energy density, whereas the latter is excluding the
gravitational energy density component, which is shown in the fourth column as the difference to its
initial value Aey = €4(t) — €4(0). Each panel spans a spatial domain corresponding to dimensions
x € [-1.570,1.57] and y € [0,379]. The thin projections in z-direction have width dr = 0.066 ro
centered at z = 0.
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(a) Left: Evolution of total energy FEio: and its energy (b) Same as in the left subfigure, now limited to the bub-
components volume-averaged over time covering the ble region, where the latter is defined as the number
entire spatial domain within r/ro < 3. Right: of cells exceeding Xpup > 1073,

Relative energy changes at each time ¢ such that
AE(t) = E(t) — E(0) is the energy component sub-
tracted by its initial value.

Figure 4.4.

4.1.2. Mixing

As discussed in a previous section, a buoyantly rising bubble is going to get distorted and
eventually mixed with the quiescent ambient gas sooner or later depending on the level of viscosity
or the strength of the magnetic field. One way to quantify the fraction of mixed gas is to compute
the volume covering fraction, which we will show in figure 4.25 for the convergence study in
section 4.5. Another way to estimate mixing is to compute the gas clumping factor C,, which is
a measurement of how density varies within a gaseous medium. The peaks of a clumping factor
distribution represent gas clumps and can be interpreted as perturbations from the smooth gas
density profile. The gas clumping factor is defined by averaging the cluster density profile within
radial shells of constant width from the cluster center (Vazza et al., 2013):

_ Jo?(a2 (g (4.3)
(fo p(r)dQ)2 (e — ‘
where €2 is the solid angle of a sphere. A homogeneous ICM with a smooth gas density distribution
is considered to be not clumpy (C, = 1). However, X-ray analyses of galaxy clusters show that
the gas density inferred from the X-ray surface brightness is overestimated by N\/@ if the ICM
is clumpy. We note that averaging within spherical shells in our model setup might not be

Cp(r)

a good approximation since introducing bubbles in a homogeneous ICM breaks the spherical
symmetry in the cluster. As Vazza et al. (2013) point out, a high gas clumping factor does
not necessarily imply an increased presence of dense gas clumps, especially since we are not
investigating distributed gas clumps which have formed due to accretion or mergers. However,
we can rewrite equation (4.3) as a measure of the density variation of the ICM such that C,, is
related to the variance and mean of the density as

o) (P*) = (p)?

T

+1, (4.4)
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where we omit §2 for brevity. The mass-weighted gas clumping factor is shown on the left in
figure 4.5. We plot C, of the entire cluster for our fiducial run xB6/N2 at several times and
compare it with the hydrodynamic simulation. Based on the peaks, we can infer until which
radius the bubble has risen at each time given. The width of each distribution indicates how
spread the bubble has become. We see that the bubble of the Braginskii run slows down due to
anisotropic viscosity and only reaches out to r/rg &~ 2.5 with its bubble front at time t/tyg = 8
while most of the bubble gas lies at r/rg ~ 1.8. In the hydrodynamical case, the bulk of the
bubble material reaches out to r/rg ~ 2.5 after the same time. Overall, C, stays close to one
at all times. The amplitudes of both samples peak roughly at the same clumping factors at
each time, shifted to larger radii for hydro. We expected a slightly different result with zB6/N2
having higher clumpiness throughout the simulation, because Braginskii viscosity should damp
some fluid motions from being mixed with the quiescent ICM. Instead, the left panel of figure
4.5 suggests that our viscosity driven run displays approximately the same amount of mixing
as the inviscid control run. Visual comparison of figures 4.24 and 4.1 however indicate that
there is less mixing in the Braginskii run than in the hydrodynamical run. Hence, using the gas
clumping factor to assess the amount of mixing for an unstable rising bubble might not be very
reliable and we will not continue with a deeper analysis. That the final clumpiness does not
differ much is probably related to the anisotropic suppression of instabilities as the bubble rises.
We have already described that the bubble is less coherent in the y-z plane perpendicular to the
magnetic field for our fiducial run (see figure 4.2). That is possibly why our overall picture of
clumpiness is relatively vague to interpret, because the torus-like shape of an evolved bubble in a
hydrodynamical environment and effects due to anisotropic viscosity might result in comparable
gas clumping factors when averaging over radial shells. Furthermore, changes in density do not
have to necessarily occur due to mixing. In fact, the cluster density is also affected by soundwaves
and adiabatic expansion or compression of gas.

Therefore, we quantify mixing next by avoiding using a method based on averaging radial
shells. We achieve this by plotting the entropy of the tracer mass fraction Xy, as a function of
time on the right in figure 4.5. This method is described by Lecoanet et al. (2016), where they
introduce a dye concentration in their simulations, which is analogous to passive scalars used in
this thesis. Both quantities range from 0 to 1. So the local fraction of dye particles is similar
to our tracer mass fraction Xy, except that Lecoanet et al. (2016) add a diffusion term in the
equation for the evolution of the dye concentration. Although we do not have such a term in our
set of Braginskii-MHD equations, we can still take advantage of using the dye since we are only
interested in the volume-integrated dye entropy S = [ psdV. The dye entropy per unit mass is
defined as s = — Xpup In Xy, (Lecoanet et al., 2016) and the total dye mass is given by

Mx :/ pXpundV. (4.5)
v

To make the total entropy unitless, we divide S by its maximum entropy Syax = —X;,, In X7y, [ pdV,
where X} = [ pXpundV/ [ pdV = Mx /M. The maximum entropy represents the fluid state
where the dye concentration is fully mixed within the fluid. We find that a fully mixed cluster
would have X7, = 0, while a completely unmixed fluid with Xy, = 0 or Xy, = 1 everywhere
has zero dye entropy. We show the evolution of S/Spax in the right panel of figure 4.5. We infer
that our hydrodynamical model shows higher entropy compared to our Braginskii run, which
indicates higher level of mixing. The ICM of xB6N2 becomes to 33% fully mixed at t/ty = 8,
while the inviscid run reaches 37 percent of its maximum dye entropy. It becomes much clearer
now that anisotropic viscosity suppresses mixing of a buoyantly rising bubble by evaluating the
dye entropy budget of the cluster than by plotting the clumping factor. Note that S/Spax is not
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zero at t/ty, because our bubble has an analytical profile for the tracer mass fraction initially,
which smoothly transitions from Xy, = 0 to Xpu, = 1 (see equation (3.11)).
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Figure 4.5.: Left: Mass-weighted gas clumping factor C, averaged over thin radial shells, evaluated at different
times for both the fiducial simulation (solid lines) and the hydrodynamical run (dashed lines). Right:
Volume-integrated dye entropy S as a function of time, normalised by the maximum entropy Smax
for a fully mixed dye concentration. A fully mixed cluster has S/Smax = 1

4.1.3. Cooling and Heating

While studying the interactions of rising bubbles in a cluster atmosphere, we are also interested
in measuring the heating rate of the ICM due to MHD transport processes. As described in
section 2.2.3 the cavities provide roughly enough energy to balance the AGN heating rate with
the radiative cooling rate of the central gas. The probably self-regulating mechanism of heating
and cooling is mitigating cooling flows in CCs and preventing its core collapse. The X-ray cooling
rate Q~ via bremsstrahlung can be estimated from observed X-ray surface brightness maps and is
approximated by Q= = n?A(T), where n is the number density and A(T) is the cooling function
depending on the temperature 7. We have already derived Q@ and A(T") in equations (2.13) and
(2.14), respectively, where we have integrated the emissivity over all frequencies. Normalized
to quantities in our ICs, we get a radiative cooling rate (per unit volume) at the cluster center
analogous to Kunz et al. (2011) of

) keT \ /2
~ A8 x 107 ( " ) Tem™3, 16
Q 8 0.03cm-3/) \334key ) 8% ™ (4.6)

In our simulations we need to compute synthetic X-ray images, where we assume the local X-ray
emissivity to be proportional to p>T''/? and integrate along the line of sight (z-direction) through
the simulation domain (see equation (2.13)). The synthetic X-ray images of our fiducial model
xB6N2 are shown in the first column in figure 4.7. At the cluster center, the intensity Ix is
the highest since more bremsstrahlung is emitted due to higher number densities causing more
Coulomb collisions at the core. The bubble has very faint emission due to its high temperature
and low density. At early times, the displacement of X-ray emission is clearly seen in the uprising
cavity and its morphology shows good agreement with observations. However, despite the fact
that we use a relatively high viscosity coefficient (about 8 times the Spitzer value, see section
3.1), eddies and perturbations form quite fast at the rim of the bubble, which are actually
not observed. And as already discussed, the cavities are even less coherent in the y-z plane
perpendicular to the initial magnetic field lines. Later on as the cavity gets disturbed by KHI
and RTI, more cluster gas gets mixed with its interior and more bremsstrahlung is radiated away.
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It is unclear how the AGN energy is actually thermalized. Since many heating mechanism in
galaxy clusters are proposed (see section 2.2.5), we will only focus on the one arising from pressure
anisotropies Ap = p; — p|, which enter Braginskii-MHD as an anisotropic viscosity tensor (see
section 2.3.5). Kunz et al. (2011) show that pressure anisotropies regulate viscous heating of a
weakly collisional magnetized plasma. They infer that these lead to local heating rates which
are comparable to the radiative cooling rates in the ICM, if there is sufficient turbulent energy
provided, which can be thermalized. In addition, they show that the balance between viscous
heating and radiative cooling is thermally stable, whereas it is not with thermal conduction,
which arises from an anisotropic heat flux in the Braginskii-MHD equations (which we neglect
in this thesis).

We described in section 2.3.5 that the anisotropic pressure arises due to the conservation of
the first adiabatic invariant for each particle on time-scales much larger than the ion cyclotron
frequency: p = mvi /2B = const. So, any change in magnetic field strength must be accompa-
nied by a proportional change in perpendicular pressure, such that p; /B ~const. Certainly, a
turbulent ICM will induce time-dependent fluctuations in B, but also an initial quiescent ICM
as modelled with z B6/N2 will lead to changes in B, since the rising bubbles are subject to non-
linear macro-scale instabilities like KHI and RTT (see section 4.1). Therefore, regions of positive
(negative) pressure anisotropy will emerge, corresponding to locally increasing (decreasing) mag-
netic field strength, which is plotted in the latter columns of figure 4.6. We can see that most
of the pressure anisotropy is formed at the rim of the bubble, where the primary vortices are
going to be induced. The reason is that Ap is dependent on the rate of strain (see equation 4.9
below) and therefore is associated with turbulent motions. Since the primary vortices inject the
majority of turbulent energy into the turbulence cascade, the highest level of Ap are reached at
these eddy regions.

Comparing ||B|| of the first column of figure 4.6 with the unlimited Ap in column three,
contradictorily suggests that the pressure anisotropy is not dependent on magnetic field strength,
which can be misleading since ¥ B6N2 is based on an initial 3 = 10°, corresponding to || B|| =
0.1 uG. In fact, recalling from equation (2.42) shows that we have a magnetic field strength
proportionality as Ap o d/dt(In B*p2) &« B/B. So even if B is small, the fractional change per
unit time, B /B, can be large. Thus in the fiducial run, unlimited Ap is sensitive to changes
in field strength, because we see that Ap ~ 0 in the trailing region where B is enhanced, but
dB/dt ~ 0 stays roughly constant. If we limit Ap according to equation (2.48), the pressure
anisotropy is pinned to a very narrow range of possible values due to the extreme plasma beta.
In fact, we find that Ap ~ 30 X Apjy in the fourth column of figure 4.6 and we see now, that
the limited anisotropic pressure coincides with || B instead of B. Regions of positive (negative)
Ap correspond to a stronger perpendicular (parallel) thermal pressure component and are color-
coded in green (brown).

If the pressure anisotropy Ap becomes comparable to the magnetic energy density B2/8m,
micro-scale instabilities will be triggered (see section 2.3.6), which are not described by Braginskii-
MHD and are not resolved in our simulations. In kinetic simulations, these micro-scale instabi-
lities regulate pressure anisotropy such that they sustain marginal stability (Rosin et al., 2011).
Hence, in order to model viscous stresses correctly, Ap is limited within thresholds for stability
of firehose and mirror instability (see equation (2.48)),

8T APlim
ST2Plim . 4

—2< 0 :

(4.7)

where we abbreviate fp;,, = 8TApym/B? for convenience, which is plotted in the second and
third columns of figure 4.7. The difference between both columns is that the second one takes
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Figure 4.6.: Projected slices of the -y midplane parallel to the initially uniform magnetic field lines for our fiducial
run xB6/N2 showing from left to right the magnetic field strength in micro Gauss, the plasma beta
and the unlimited and limited pressure anisotropy. The last column is identical to the third column
except that it shows the projected y-z midplane. Each panel spans a spatial domain corresponding
to dimensions © € [-1.570,1.570] and y € [0,370]. The thin projections in z-direction have width
dr = 0.066 ro centered at z = 0.

the unlimited fp and clips them to lie within [-2, 1], while the third column limits fpy;,, before
plotting it as a projected slice. The projection represents a small average in z-direction of almost
entirely values being either -2 or 1. Therefore, the third column appears as if fp);,,, would not
be saturated inside the bubble region, but basically it just shows a shifted mean to smaller
values compared to column two, where fp ranges up to orders of magnitude of +10%. Eitherway,
firehose-unstable (mirror-unstable) regions appear as saturated red (violet) patches. We note
that the limiters are just artificially implemented in the post-processing for the presented run
xB6N2. The IC itself has been simulated without limiting Ap. Thus, since the patches in the
second column are over-saturated, it shows that micro-scale instabilities are excited very quickly.
In other words, the patches indicate regions of departure from marginal stability. This is not
surprising considering the very low magnetic field strength (3 = 10°), which shrinks the range
of the limits in equation (4.7) significantly.

From equation (2.44) we see that Ap is proportional to the parallel viscosity coefficient and
can be interpreted as an anisotropic viscous flux. This enables us to calculate the heating rate
due to parallel viscous dissipation of motions. Its derivation follows the arguments presented by
Kunz et al. (2011). Starting from the viscosity tensor IT, the viscous heating rate Q™ is given
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by
1
Q+:—H:VU:Ap<bb:VU—§V~v>. (4.8)

The term in parentheses is the rate of strain, which is related to the ion-ion collision frequency
as

1
viAp = 2.88p <bb : Vo — §V . ’U) . (4.9)

So, the rate of strain induces pressure anisotropies, which are relaxed on the ion-ion collision
time-scale, whenever turbulent motions occur. If we assume that vy is independent from micro-
scale instabilities, equation (4.9) states that the production of pressure anisotropy by macro-scale
fluid motions is balanced by isotropization via Coulomb collisions. Using equation (4.9) together
with v = 0.96 /(v p), we can rewrite equation (4.8) solely in terms of the pressure anisotropy,
1 (Ap)®  (Ap)®  (Ap)°

+ _ . - = 4.10
Q 2.88 1 P 3yp 3’ (4.10)

which is always positive (see also Berlok et al. 2019). So, the parallel viscous heating rate (per
unit volume) is achieved by assuming that the pressure anisotropy is a source of free energy that
is eventually converted into heat by collisions (Kunz et al., 2011). Q™" from equation (4.10) is
plotted in the fourth and fifth columns of figure 4.7, where the latter is restricted by applying
limiters for Ap. The fourth column shows that the unlimited viscous heating rate is the highest
in the wake of the bubble at early times when the bubble is about to break apart. There, the
rate can go up to Q.. = 3.4 QaL, where Qar ~ 107® ergs~! cm™3, which is basically the same

value as calculated by Kunz et al. (2011).. Also the rims of the bubble are quite pronounced
with average heating rates of Q. , = 0.01 Qar. Converting the code units of typical heating rates

avg
into physical units yields
$e =0.01Qf = 1.1 x 10" ergs™ cm™?, (4.11)
Qihax = 34Q7 ~3.5x 10 % ergs™ em™. (4.12)

The maximum value peaks at about a factor 40 times larger than the radiative cooling rate, which
we estimated in equation (4.6), whereas the average value only reaches one tenth of the cooling
rate. This means that unlimited Braginskii heating is capable of balancing radiative cooling at
some local regions, but it is not throughout the entire cluster core and not continuously over
time. As the viscosity coefficient is quite high, viscous stresses can have an effect on the fluid
motion and dissipate into thermal energy. At later times the turbulent motions get weaker and
concomitant pressure anisotropy, which is quadratically proportional to the heating rate. Hence,
the latter decreases accordingly. By looking at the y-z plane (see fifths column of figure 4.6), a
similar picture becomes apparent. Except for the strong heating rate in the wake at t/ty = 2,
the values for viscous heating perpendicular to the xz-y plane lie in the same range and are
pronounced at the rim of the evolving bubble. The last column of figure 4.7 shows again parallel
viscous heating, but with hard-wall limited Ap. The colorbar is scaled in a similar interval
as before multiplied by 10. So the limited values are weaker by roughly a factor of 20 overall
compared to the unlimited ones. In addition, viscous heating appears at different regions now,
because the pressure anisotropy is much more sensitive to changes in the magnetic field strength
in the limited case. This can be seen in the upper panel at t/tg = 2, where the very weak
magnetic field lines have not been much compressed or stretched yet compared to the initial
uniform alignment. Together with equation (4.7), yields that Apy, becomes much smaller than
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Ap if B? stays very weak. Only when B? is locally increasing in compressed regions, Apiim
becomes noticeably larger. It is useful to compare column five of figure 4.7 with column four of
figure 4.6 to infer that both Qﬁm and Apym/p coincide with each other.When the rising bubble
evolves, the field lines get compressed, the magnetic field gets enhanced and pressure anisotropy
induced in these regions is limited by a smaller factor, which in turn leads to viscous heating.
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Figure 4.7.: Projected slices of the z-y midplane parallel to the initially uniform magnetic field lines for our
fiducial run x B6N2 showing the synthetic X-ray surface brightness map, the departure from marginal
stability for the pressure anisotropy and the parallel viscous heating rate (both each unlimited and
limited according to equation (2.49)). Each panel spans a spatial domain corresponding to dimensions
x € [-1.57r0,1.57] and y € [0,379]. The thin projections in z-direction have width dr = 0.066 ro
centered at z = 0.

We show the volume-weighted average heating and cooling rate separately over time in figure
4.8. The left subfigure shows that the cooling rate averaged over the entire spatial domain stays
nearly constant at Q= = 10"?6 ergs™' cm™3, whereas the average unlimited viscous heating rate
does not increase above QT = 107?Y ergs™! cm™3, which puts the latter to the same order of
magnitude as the local (non-averaged) limited heating rate Qf{m. Instead of looking at the total
cluster average, we plot the average heating rate of the bubbles in the right subfigure, where we
define a bubble cell if the passive tracer exceeds 1073. The cooling rate is now slightly decreasing
over time, since the bubble rises upwards into lower dense regions of the cluster core. The average
bubble heating rate is only one order of magnitude smaller than cooling at early times, when
macro-scale instabilities induce turbulent motions, which produces pressure anisotropy. So, with
an initially very weak, non-turbulent magnetic field, parallel viscous heating is not capable of
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balancing cooling throughout the bulk of the ICM. It only becomes quite noticeable in the bubble
region itself over a short time-scale. The dependence on the bubble location becomes clear by
looking at the radial profiles in figure 4.9. The region influenced by bubble motions adiabatically
expands over time and dissipates energy across a larger range of radial shells. But as already
pointed out, the average viscous heating rate nowhere reaches significantly high values compared

to radiative cooling for our fiducial model.
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Figure 4.8.: Left: Time evolution of the volume-weighted averaged heating and cooling rate in physical units.
Right: Same as left subfigure, but restricted to bubble cells with Xy,up > 1073,

10-284

Q*, xB6N2
—— Q~, xB6N2

0 1 2 3 4 s 6 7
t/to

10724 t/to =2, xB6N2
t/to = 4, xB6N2
—— t/to =6, xB6N2
—— t/to=8, XB6N2
10—3 4
‘ 1074 4
(e
=
o
10—5 4
10—5 4
10—7 4
0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Right: Mass-weighted radial profiles of the heating rate (solid lines) and cooling rate (dashed line) in
physical units at specific times. The cooling rate stays nearly constant at all times.
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4.2. Uniform B, 3 = 10°

So far, we have described and analysed the global evolution of our fiducial run £ B6/N2, which
models the ICM as an extremely weakly magnetized plasma. We also inferred viscous heating
rates from the fluid motions having a Reynolds number of approximately 50, while the pressure
anisotropy was not limited. In section 4.2.1 we analyse the results when on the one hand the
viscosity coefficient is reduced by a factor of ten as in model zB6N3 (yielding Re = 500), and
on the other hand when the viscosity is not reduced specifically, but the pressure anisotropy is
limited as in model 2 B6N2lim according to the thresholds given by equation (2.48). In section
4.2.2 we analyse how an isotropic Braginskii viscosity affects the evolution of an buoyantly rising
bubble. The initial orientation and the strength of the magnetic field is kept unchanged in all of
these three cases.

4.2.1. Parameter Study - Reducing and Limiting v

For run xB6N3, the reduced viscosity coefficient implies an increasing Reynolds number to
Re = 500. As pointed out in section 3.1, this results in a modelled ICM, which is just about 20
percent as viscous as we have estimated for the Spitzer value. So, it should be much less efficient
in suppressing KHIs or viscous heating than our fiducial run. We expect a similar outcome
for £ B6N2lim, if the limiters are applied to pressure anisotropy since the interval where Ap is
not pinned to marginal stability becomes very narrow for a very high plasma beta (see section
4.1.3). We can see its evolution in morphology in figure 4.10, where the passive tracer mass
fraction is plotted for several different Braginskii runs and compared to the hydrodynamical
run in the first column. The rising bubbles show no striking differences between runs hydro,
xB6N2lim and *B6N3. This implies that firstly, the micro-scale instabilities are triggered so
fast in x B6/N2lim that actually very little pressure anisotropy can be produced, which induces
viscous stresses. Secondly, the unlimited viscous stresses in xB6/N3 are not strong enough
to suppress RTT effectively and the bubble material gets mixed with the ambient medium on
time-scales comparable to the hydro run. Therefore, in order to resemble the coherent cavities
observed in X-ray surface brightness maps, the viscosity coefficient must be at least close to the
Spitzer value. Furthermore it is interesting to note, if we compare the wake of x B6/N2lim with
xB6N2, we identify just a mono-line of vertically stripped gas in the limited run, whereas in the
unlimited case there are clearly two projected stripes of gas visible. These stripes also indicate
enhanced magnetic field strengths due to stretched/compressed field lines. From this point of
view, zB6N3 seems to be an intermediate case, where the duality is slightly apparent. Also the
bubble front of zB6N2 at t/ty = 2 is wider compared to 2 B6/N2lim, where the morphology has
more like a bullet shape.

How well each model mixes its bubble material with the ambient ICM can be seen in figure
4.11, where we plot the volume-integrated passive tracer entropy S as a function of time (see
section 4.1.2). The two models being discussed in this section have levels of entropy close to the
hydro run, implying nearly unsuppressed mixing rates. Thereby, the limited run with v = 1072
is slightly less viscous than the unlimited run with v = 1073. Hence, confirming our qualitative
analysis. The violet line representing the isotropic model differs significantly and will be discussed
in section 4.2.2. We find the following ordering

Shydro > Slim > SBrag > Sisos (4.13)

precisely as expected.
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Figure 4.10.: Projected slices of the -y midplane parallel to the initially uniform magnetic field lines showing the
tracer mass fraction Xyup for several models including from left to right hydro, xt B6N2lim, © B6N3
and the fiducial run B6N2. Each panel spans a spatial domain corresponding to dimensions
x € [-1.57r9,1.5710] and y € [0,370]. The thin projections in z-direction have width dr = 0.066 1o
centered at z = 0.
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Figure 4.11.: Volume-integrated dye entropy S as a function of time, normalised by the maximum entropy Smax
for a fully mixed dye concentration. A fully mixed cluster has S/Smax = 1. It shows the mixing
efficiency of the bubble material for the given runs or in other words how viscous the evolving bubbles
become.
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In the first three columns of figure 4.12 we show the evolution over time of the limited pres-
sure anisotropy, the limited range of marginal stability and the limited viscous heating rate for
xB6N2lim. By directly comparing the "physically" limited Apyy, (first column) with the "arti-
ficially" limited one of xB6/N2 in the fourth column of figure 4.6, we can infer that the bubble
region produces ten times more pressure anisotropy in the former case.

The parallel viscous heating rates for simulation x B6/N2lim (third column of figure 4.12) are
fairly of the same order of magnitude than the unlimited rates Q" for xt B6N2 shown in the fourth
column of figure 4.7. In addition, we can infer that the "physically" limited Ap in xB6N2lim
locally induces about one order of magnitude more viscous heating than the "artificially" limited
Ap in xB6N2. So, after considering both "physically" and "artificially" mixing and heating
rates, it becomes clear that it is not sufficient to simply mimic limited pressure anisotropy by
clipping its values during the post-processing after the simulation has been already run.

The last three columns of figure 4.12 show the unlimited results of Ap, fp and Q" for run
xB6N3. The unlimited viscous heating rates are smaller than about a factor of ten compared to
xB6N2. This might be quite surprising as Q" is proportional to 1/v)|, naively indicating that
lowering the viscosity coefficient would result in an increased heating rate. But since Q1 o (Ap)?,
the production of the latter must be considered more powerful. And indeed, by comparing Ap of
xB6N3 with t B6N2 (third column of figure 4.6) we infer that Ap(xB6N2) ~ 10 x Ap(zB6N3),
resulting in a ten times smaller heating rate for xt B6/N3, considering that y||(xBGN2) = 10 x

Nonetheless, B6N2lim and xB6N3 show different bubble regions where viscous heating
emerges. The reason is the same as we have already discussed in section 4.1.3 and occurs
because of the extremely high plasma beta. If Ap is limited, it becomes sensitive to changes in
magnetic field strength. Where the field lines get compressed, pressure anisotropy is produced
which enters viscous heating quadratically. If it is unlimited, production of Ap is dominated by
the rate of strain of turbulent motions. We do not present radial profiles of the Q7 /Q™ ratio or
the alike, because the graphs are quite similar to the ones plotted for t B6N2, except that the
heating rates are even weaker.
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Figure 4.12.: Projected slices of the -y midplane parallel to the initially uniform magnetic field lines showing from
left to right the limited pressure anisotropy, departure from marginal stability and viscous heating
for t B6N2lim, and the unlimited Ap, fp and Q™ for run  B6/N3. Each panel spans a spatial domain
corresponding to dimensions x € [-1.570,1.57¢] and y € [0, 37¢]. The thin projections in z-direction
have width dr = 0.066 o centered at z = 0.
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4.2.2. Isotropic Viscosity

Instead of modelling buoyantly rising bubbles affected by anisotropic viscosities within Braginskii-
MHD, we take the isotropic viscosity tensor as introduced in equation (2.47) and discuss in this
section how the bubbles evolve if the viscous stresses are not dependent on the direction of the
magnetic field lines. We can see the isotropic result with Re = 50 in figure 4.13, which we
can compare with the isotropic runs "5" from Reynolds et al. (2005) and "H2" from Dong and
Stone (2009). As our tracer mass fraction and synthetic X-ray image show, Navier-Stokes vis-
cosity suppresses KHIs and RTTs and thus prevents mixing quite efficiently. Directly comparing
xB6N2iso with x B6N2 reveals a drastically altered bubble evolution, where the bubble remains
intact throughout the simulation time. FEspecially the bubble front stays coherent and undis-
turbed from macro-scale instabilities. However, a mushroom-like trailing region is forming over
time, which is in good agreement with the findings by Reynolds et al. (2005); Dong and Stone
(2009). The synthetic X-ray surface brightness map also matches with observations of X-ray
cavities in real galaxy clusters (see figure 2.2 for Perseus-A). The isotropic mixing rate is plotted
as the violet line in figure 4.11 indicating that the entropy of the passive tracer reaches only
17% of its maximum entropy level for a fully mixed ICM at ¢/ty = 8. This value is about one
half of the run x B6/N2 with anisotropic viscosity at the end of the simulation. Hence, the latter
is not as efficient as an isotropic viscosity at suppressing KHI, because the effective anisotropic
viscosity is dependent on the field line direction and therefore its damping effect on motions is
reduced.

From the vorticity map, showing the absolute curl of velocity [|[(V x v)]|| in units of 1/, we
can infer that the bubble interior is relatively quiescent and not driven by turbulent motions.
Although the highest levels of vorticity are induced at the rim of the bubble as it rises upwards
the cluster atmosphere, these are not sufficiently high to trigger KHI or RTI. In addition, pressure
support might play a role in form of draping of magnetic field lines at the bubble front, where
magnetic pressure is enhanced by nearly a factor of 100. The isotropic morphology and vorticity
generation resembles the findings by Dursi and Pfrommer (2008) performing 3D simulations of
overdense bubbles rising in an initially uniformly magnetized medium.

We note that a run with an isotropic Navier-Stokes viscosity of v, = 1072 (Re = 500) does
not show a coherent bubble surface. Note that this level of viscosity is roughly ~ 80% v, the
Spitzer value (see section 3.1), which is quite interesting considering the following study. Using
deep Chandra observations of the Coma cluster, Zhuravleva et al. (2019) find from analysing
density fluctuations down to the viscous dissipation scale that the effective isotropic viscosity in
the bulk ICM is suppressed by a factor of ~ 100 by comparing with hydrodynamic simulations
based solely on Coulomb collision rates. This implies that the cluster gas appears to be much
more turbulent with a large effective Reynolds number and that their results fit best with hydro-
dynamic simulations using level of isotropic viscosity with vis, ~ 0.01 v, of the Spitzer value. In
figure 4.13, our isotropic viscosity coefficient is roughly 8 times as viscous as the Spitzer value. If
we lower 44, by one order of magnitude (~ 80% vsp,), the evolution of our bubble shows emerging
KHIs resulting in disrupted bubble interfaces. We suppose that if we would have run another
simulation with vis, ~ 1% vsp (consistent with Zhuravleva et al. 2019), the bubble would have
been shredded much sooner not resembling the morphology of observed (ghost) cavities. The-
refore, isotropic dissipation of momentum is not very likely the correct physics for suppressing
fluid macro-instabilities. Zhuravleva et al. (2019) conclude that the suppressed effective viscosity
can be explained by preferring non-hydrodynamic models including anisotropic transport and
plasma micro-instabilities in order to account for the enhanced collision rates.
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Figure 4.13.: Projected slices of the z-y midplane parallel to the initially uniform magnetic field lines showing
from left to right the tracer mass fraction, the line-of-sight integrated X-ray emissivity, the abso-
lute vorticity in units of ¢og, the plasma beta and the magnetic field strength in micro Gauss for
run £B6N2iso. The first, fourth and fifth columns show streamlines of the magnetic vector field,
while the third column shows the vector field of the velocity. Each panel spans a spatial domain
corresponding to dimensions x € [-1.5r9,1.5r¢] and y € [0, 370]. The thin projections in z-direction
have width dr = 0.066 ro centered at z = 0.
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4.3. Uniform B, 5 = 100

In this section we present model x B2N2lim, where we keep the initially uniformly magnetized
medium, but increase the magnetic field strength from || B|| = 0.1 uG to ||B|| = 9 uG by setting
the plasma beta to § = 100. Additionally, our modelled B-field becomes radially dependent on
the density such that B(r) = p(r)/2, which is in accordance with the findings by Bonafede et al.
(2010) for fitting an isothermal cluster profile (see section 2.3.3). Figure 4.14 shows qualitatively
the mixing efficiency and the evolution in morphology of the rising bubble of run xB2N2lim
by plotting the tracer mass fraction Xy, and the line-of-sight integrated X-ray intensity Ix =
T2 0dd columns show the projected z-y midplane, while even columns show the y-z
midplane perpendicular to the uniformly aligned field lines. A striking difference between the
two planes becomes immediately apparent. The plasma beta is now four orders of magnitude
greater than in the discussed models before, hence making the anisotropic effect of magnetic
tension pronounced. The magnetic field is so strong that the macro-scale fluid motions become
two-dimensionalized with respect to the magnetic field direction. In the z-y midplane parallel
to the field, RTIs are suppressed by high magnetic tensions and viscous stresses. Conversely, in
the y-z midplane perpendicular to the field, neither Braginskii viscosity nor magnetic tension is
very efficient in suppressing RTT and we see elongated fingers emerging from the rising bubble.
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Figure 4.14.: Projected slices of  B2N2lim alternating between the z-y midplane parallel to the initially uniform
magnetic field lines and the y-z midplane perpendicular to it. The first two columns show the tracer
mass fraction Xy,p with streamlines of the magnetic vector field, the middle columns the synthetic
X-ray surface brightness map and the last two columns the absolute vorticity with streamlines of the
velocity vector field. Each panel spans a spatial domain corresponding to dimensions [-1.57¢, 1.5 7]
and [0, 370]. The thin projections have width dr = 0.066 ro.

The occurrence of these fingers might be supported by the fact that the initial bubble region
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has not been magnetically isolated from the ambient uniformly aligned field lines. As described
in section 2.3.1 the plasma fluid is tied to the field lines. So as the bubble buoyantly rises, it
drags the field lines with it, which inhibits the bubble material to escape due to the relatively
high magnetic tension effects. Together with the fast-growing RTI, where perturbations are quite
unsuppressed in the perpendicular direction, the elongated fingers become apparent as a physical
consequence.

The magnetic field strength and the limited pressure anisotropy can be seen for both midplanes
in figure 4.15. We find that the production of Apjiy, reaches roughly the same order of magnitude
as the unlimited Ap in run x B6 N2 (see figure 4.6). Therefore, as long as the magnetic pressure of
the ICM is sufficiently large compared to the thermal pressure, the pressure anisotropy clipped to
lie within kinetically motivated thresholds does not shrink noticeably and simultaneously mixing
is suppressed by magnetic tension. This is in contrast to a very weakly magnetized ICM where
Apiim induced viscous stresses alone are not capable of keeping the bubble material unmixed
(see section 4.2.1). We have ran both zB2N2 and xB2N2lim, but focus only on the latter
in this section, because both look very similar in terms of morphological evolution and their
derived quantities. They do not differ much, because both Ap and Apy;, vastly never trigger the
firehose or mirror micro-instabilities, which can be seen in the latter two columns of figure 4.15
for x B2N2lim. Except for the y-z midplane at ¢/ty = 2 the thresholds for marginal stability are
almost nowhere reached. Note that we plot fp here without projection to ensure not to dilute
the panels with a mean computed from averaging positive and negative values. If the micro-scale
instabilities are never triggered, then implies that the viscous stresses can be entirely described
by Braginskii-MHD and are not inhibited at some spatial regions. In this case we do not expect
to see a physically motivated disagreeing outcome by comparing x B2N2 and xB2N2lim.

Therefore, we focus on analysing Apjiy, of run zB2N2lim in the middle two columns of figure
4.15. The bubble interior itself and its trailing region are dominated by the parallel pressure
component (color-coded in brown), whereas the rim of the bubble is dominated by the pressure
component perpendicular to the local magnetic field lines (color-coded in dark-green). The
regions where Apyy, is induced coincide quite well with regions of higher levels of vorticity, which
confirms that pressure anisotropy is produced where fluid motions generate a non-negligible
amount of rate of strain, which is not dependent on the strength of the magnetic field (see
equation 2.44). Whether Apyy, is positive or negative depends partially on the local direction
of the field line b and also on the gradient and divergence of velocity. So one can tell from
Ap oc d/dt(In B3) oc bb : VoV -v) whether the magnetic field is increasing in time or decreasing.
It is quite interesting to note that both projected midplanes do not significantly differ in the
amount of pressure anisotropy they produce.

In order to clarify that it physically does not matter for the bubble evolution whether the
anisotropic pressure is limited or not, we plot the viscous heating rates for the simulations t B2/N2
and x B2N2lim in figure 4.16. It becomes evident that not only are the buoyantly rising bubbles
evolving quite similar, but also dissipate nearly the same amount of heat, which is comparable
to the unlimited viscous heating rate of xB6N2 with 8 = 100 in figure 4.7. Hence, the rate of
viscous heat QT seems to be not dependent on the initial plasma beta used for modelling the
ICM of an isothermal cluster core, if one ignores the kinetic limiters. On the other hand, it does
depend significantly if the limiters are considered.

If the pressure anisotropy is driven to be at marginal stability of the micro-scale instabilities
according to equation (2.49), we can rewrite the expression for viscous heating (4.10) together
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Figure 4.15.: Projected slices of  B2N2lim alternating between the z-y midplane parallel to the initially uniform
magnetic field lines and the y-z midplane perpendicular to it. The first two columns are showing
the magnetic field strength in micro Gauss || B||, the middle columns the limited pressure anisotropy
Apiim and the last two columns departure from marginal stability fp. Each panel spans a spatial
domain corresponding to dimensions [-1.5r9, 1.57¢] and [0, 37¢]. Except for the latter two, the thin
projections have width dr = 0.066 ro.

with the Spitzer viscosity of equation (2.30) to
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where & is either -2 (p| dominated firehose unstable) or 1 (p, dominated mirror unstable). In
fact, equation (4.14) assumes that Apy, reaches marginal stability in the entire spatial domain
such that there is no spatial region where the microinstabilities are not triggered. Note the
strong dependence on magnetic field strength, Q@ o< B4, which becomes immediately clear here
compared to equation (4.10). We can infer that locally inrm ~ @~ by comparing the limited
heating rate (4.14) with the cooling rate (4.6) if normalised to the same ICs. This is only to
some extent consistent with the results found by Kunz et al. (2011). In fact our estimate (per
unit volume) in equation (4.14) is equal to the one stated by Kunz et al. (2011), but they claim
that both viscous heating and radiative cooling should approximately balance themselves at all
radii inside the cluster core due to turbulent dissipation, Q| (r) ~ Q~(r). This is not what we
infer from plotting the mass-weighted radial profiles for the ratio Q*/Q~ at different times of
the bubble evolution for runs xB2N2 and x B2N2lim in the right subfigure of 4.17. Instead we
see that the ratio only barely reaches 1072 inside the bubble region at early times. At later times
the ratio shrinks continuously down to several 1074, which can be also seen in the left subfigure
of 4.17, where we plot both rates separately restricted to cells classified as bubble material as
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a function of time. Outside the bubble region viscous heating rates are negligibly small and
are not even close to balance radiative cooling. This seems to be in contrast with Kunz et al.
(2011). However they assume a turbulent ICM with a constant source of driving the turbulent
motions, where the production of pressure anisotropy triggers the micro-scale instabilities in
order to sustain marginal stability within limits already derived in equation (4.7). These limits
are fp = [-2,1], where fp = 87Ap/B?. In our simulation setup, the bubble does not drive such
strong motions in a volume filling fashion.

XB2N2 xB2N2 XB2N2lim xB2N2lim

=2

t/to

=4

t/to

=6

t/to

=8

t/to

(Ap)*/(3pvy) (Ap)?/(3pv ) (Apim)?/(3pvy) (Bpim)?/(3pv )

M| (| [ —_—_.—

0.00 0.01 0.020.00 0.01 0.020.00 0.01 0.020.00 0.01 0.02

Figure 4.16.: Projected slices alternating between the xz-y midplane parallel to the initially uniform magnetic
field lines and the y-z midplane perpendicular to it. The first two columns show the unlimited
parallel viscous heating of xB2N2 and the last two columns the limited parallel viscous heating
of x B2N2lim. Each panel spans a spatial domain corresponding to dimensions [-1.57¢, 1.5 0] and
[0,370]. The thin projections have width dr = 0.066 ro.

We try to reproduce their assumption by restricting fp for each cell in our computational
domain to be exactly either -2 or 1. This allows us to quantify the viscous heating rate as a
theoretically maximum averaged over the entire cluster core, which is plotted in the left subfigure
of 4.18 as a function of time. We infer that indeed the average Q* becomes comparable to the
radiative cooling rate as the ratio between both stays almost constantly at one at all radii (see
right subfigure of 4.18). Therefore, we conclude that the estimated balance by Kunz et al.
(2011) is satisfied with our ICs considering the given assumptions. So on condition that a
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cluster atmosphere has a steady source of driving turbulence, parallel viscous heating in terms
of a specific heating mechanism among several others can be potentially high enough to not be
neglected in order to solve the cooling flow problem. In our simulation setup, however, the AGN
bubble on its own is not a sufficient source. Other sources of driving, e.g. mergers, could increase
the heating rate (see discussion in chapter 5).
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Figure 4.17.: Left: Time evolution of the volume-weighted averaged heating and cooling rate in physical units,
restricted to bubble cells with Xy, > 1073, Solid lines show the rates for the unlimited run 2z B2N?2
and dashed lines for the limited run x B2N2lim. Right: Mass-weighted radial profiles of the ratio
between heating and cooling rate for both models at specific times.
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Figure 4.18.: Left: Volume-averaged viscous heating rate and radiative cooling rate for the entire cluster domain
as if the pressure anisotropy for each cell has a value exactly such that the lower (upper) threshold for
reaching marginal stability by triggering the firehose (mirror) micro-instability is taken, plotted as
the dashed (dotted) line. The orange solid line represents the case as if for each cell fp = 87 Apyim /B>
is randomly given either the lower or the upper limit value. Right: Similar to left subfigure but now
plotted as mass-weighted radial profiles at time ¢/to = 4.
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4.4. Turbulent B, 5 = 100

After discussing in detail the different models with an uniformly magnetized ICM in previous
sections, we analyse the model tB2N2lim in this section, where the magnetic field is initialized
according to a Kolmogorov power spectrum at an injection scale slightly larger than the bubble
size (the characteristic length scale). The magnetic field configuration is described in section
3.1.1. Its result is a turbulent ICM with a roughly constant plasma beta and internal energy

throughout the spatial domain with a field strength dependence on density as B  p'/2

and mag-
netically isolated bubbles. These properties make the turbulent magnetic field model tB2N2lim

our most sophisticated model presented in this thesis.

In section 4.3 we showed that simulations with 5 = 100 display roughly the same behaviour
regardless of whether pressure anisotropic limiters are used or not. Thus, we choose to solely show
the physically more relevant simulation ¢t B2N 2lim where Apyipy, is limited. The bubble evolution
is plotted in figure 4.19 for both the projected x-y and the y-z midplane. In comparison to the
uniform magnetic field alignment with 5 = 100 discussed previously in section 4.3, we do not
see elongated Rayleigh-Taylor fingers or mushroom-like vortex-rings emerging in the turbulent
ICM. We do see different patterns in how the bubble gets mixed with the ambient gas between
the two presented midplanes. One spatial direction seems to be more efficient in suppressing
macro-scale instabilities than the other. We assume that this observation is simply due to the
Gaussian random distribution of the initial magnetic field in k-space.
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Figure 4.19.: Projected slices of tB2N2lim alternating between the x-y midplane and the y-z midplane. The
first two columns are showing the tracer mass fraction Xy, with superimposed streamlines of the
magnetic vector field, the middle two columns the synthetic X-ray surface brightness maps p7*/? and
the last two columns show the velocity field v/vg. Each panel spans a spatial domain corresponding
to dimensions [-1.579,1.570] and [0, 37¢]. The thin projections have width dr = 0.066 ro.
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Nonetheless, the overall mixing and dissipation rates are relatively high. Neither the magnetic
tension effects nor the viscous stresses are capable of suppressing RTT and KHI on longer time-
scales, not even in the x-y plane where the bubble interior stays most coherent over time. The
turbulent fluid motions become strongly anisotropic due to the Lorentz force and the turbulent
eddies dissolve in the turbulent cascade and interact between different modes (see section 2.3.3).

In figure 4.20 we compare several quantities, which are all linked together physically as we
already pointed out by discussing them in previous sections. The pressure anisotropy is pro-
portional to the rate of strain (see equation 2.44), which in turn depends on turbulent motions
represented by the curl of the velocity vector - the vorticity. Ap also increases with an enhanced
magnetic field (see equation 2.42), induced by compressed field lines and represented by the mag-
netic field strength and the plasma beta. Furthermore, the production of anisotropic pressure
is an indicator for how much viscous heating dissipates into the ICM. By looking at the fourth
column in figure 4.20, we do see the same levels of Apy;, in the rising bubble and its wake as in
xB2N2lim. Additionally, also the ambient gas becomes anisotropic to relevant amounts due to
the turbulent motions. The ambient pressure anisotropy is mainly negative indicating that on
the one hand the magnetic field lines get rather stretched than compressed or on the other hand
the injected turbulent velocities fade out and their gradients decrease. At locally confined regions
Appinm triggers the firehose (mirror) instability as can be seen in the fifths column as saturated
red (violet) small patches. However, the majority of the plasma lies within fp = 87Apji, /B2,
where no clipping is needed in order to keep the MHD description of the fluid applicable. Note
that fp is not shown in projection to avoid plotting a smoothed out average value.

The viscous heating rate lies in the same order of magnitude as in the other simulations with
a non-turbulent field. A noticeable difference in run tB2N2lim is the fact that at early times
not only the bubble interior itself reaches relevant heating rates, but also the ambient ICM
produces enough Apj, to induce sufficiently high levels of QT. Since there is no driver for
constantly injecting turbulence into our cluster atmosphere, the initial turbulent motions start
to dissipate their kinetic energy and the ambient gas becomes quiescent again at later times as
in the uniformly magnetized models. Here, by initial we mean that the turbulent velocities are
entirely introduced by the Lorentz force due to the tangled magnetic field, because they are set
to zero at t/typ = 0. The additional source of heat from the turbulent ICM however, is still not
capable of balancing the radiative cooling rate as can be seen in figure 4.21. We note that we
account for viscous heating from the ambient turbulent motions in the left subfigure by using
the vorticity map as a new threshold for averaging Q" instead of the tracer mass fraction. Even
S0, Q‘;:rb is still about a factor of ten smaller than Q~ at early times and drops down to even a
hundredth of the latter later on, which is basically repeating the same graph as for Q;rub of run
xB2N2lim in figure 4.17.

The mass-weighted radial profiles in the right subfigure of 4.21 reveal a similar result. Alt-
hough the limited turbulent run shows slightly higher heating-to-cooling ratios compared to the
unlimited turbulent simulation tB2N2, the overall picture shows that Q*/Q~ decreases conti-
nuously with time. As in 2 B2N2lim the ratio barely reaches values of 10-2 at the beginning
of the simulation, where the initially injected turbulent velocities contribute most of the ICMs
pressure anisotropy to support viscous heating. This becomes apparent as the orange line stays
relatively constant at QT/Q~ ~ 2 x 1073 even at the outer radii, whereas for xB2N2lim in
figure 4.17 viscous heating establishes itself only inside the bubble region and drops down to
QT/Q~ ~ 2 x 1075 at the outer radii for the same time t/t; = 2. At later times the turbulent
motions get dissipated and in turn no new turbulent energy sources are introduced (except for
RTI and KHI induced turbulent eddies). Hence, the overall QT /Q~ ratio decreases down to
~ 1073 for the bubble region and even lower at the ambient radii. This shows that turbulent
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viscous heating as computed in our isothermal cluster model is still too low in terms of being
a neutralising agent for radiative cooling throughout scales of space and time. Nonetheless, as
we pointed out with figure 4.18, viscous heating has the potential in doing so, if there would be
constant driving of turbulence in the cluster core such that pressure anisotropy would steadily
be lying within levels of marginal stability.
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Figure 4.20.: Projected slices of the z-y midplane showing from left to right the magnetic field strength in micro
Gauss, the plasma beta, the absolute vorticity, the limited pressure anisotropy, the departure from
marginal stability fp and the viscous heating rate. The first and second columns show streamlines of
the magnetic vector field, while the third column shows the vector field of the velocity. Each panel
spans a spatial domain corresponding to dimensions x € [-1.579, 1.57r¢] and y € [0,37¢]. The thin
projections (except for fp) in z-direction have width dr = 0.066 o centered at z = 0.
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Figure 4.21.: Left: Time evolution of the volume-weighted averaged heating and cooling rate in physical units,
restricted to grid cells with vorticity levels exceeding ||(V x v)|| > 5/to. Solid lines show the rates
for the unlimited run tB2N2 and dashed lines for the limited run tB2N2lim. Right: Mass-weighted
radial profiles of the ratio between heating and cooling rate for both models at specific times.



73 Chapter 4. Analysis

4.5. Sanity Check and Convergence Test

As a last part of our analysis, we check on the one hand that our ICs show numerical convergence
and on the other hand if they maintain hydrostatic equilibrium over time. First, in order to test
for hydrostatic equilibrium, we perform a simulation without bubbles and check that the velocities
within the unperturbed ICM approaching zero. Without using the special boundaries for our
ICs, which we have described in section 3.2.3, the cluster atmosphere does not stand still and
instead fluid velocities emerge moving towards the outer edges of the spatial domain. This can be
explained since we clip the density distribution at 37 /rg, where the analytical beta-profile has not
become asymptotically close to zero. Hence, the cluster cannot maintain hydrostatic equilibrium
in this case. One could clip the density distribution at arbitrarily large r/ro to ensure that p ~ 0
approaches zero at the outer radii, but this would expand the spatial domain to unreasonable
large dimensions in terms of total number of cells to keep the resolution constant. Therefore, we
introduced in-/outflow boundaries, which results in very low absolute velocities throughout the
ICM such that we can confirm hydrostatic equilibrium.

Next, we calculate the percentage change in total energy and in total mass within the boun-
daries of our domain. In figure 4.22 we show the results for our simulation hB6N2 with the
fiducial resolution. The total energy is the sum of kinetic, thermal, magnetic and gravitational
energy (for notation see section 4.1.1). We find that by the end of the simulation the loss both
in total energy and total mass is less than one percent of the initial value. Despite that the
total energy is not perfectly conserved, we conclude that our simulations are still feasible and
that our outer boundary conditions work fine. In addition, we have checked that the HD run
and the ideal MHD run (i.e. without viscosity) with a very weak magnetic field (8 = 10°) are
nearly indistinguishable in terms of morphology and show the same characteristics during their
evolution.
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Figure 4.22.: Left: The red curve shows the percentage change in total energy taken over the simulation time,
where Fiot = Fxin + Ftn + EB + E4. The blue curve shows the fractional percentage change in total
energy for each timestep. Right: Similar to the left subfigure, here plotted with total mass, where
Moy = [, mdV.

Next, we perform a resolution study to confirm that our fiducial resolution is numerically
converged. This is important to show that the physical dynamics of the fluid motions are
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resolved (to a certain degree). We use the same approach as done by Dong and Stone (2009)
since our model setup is quite similar (see section 3.1). We take the hydrodynamic runs at
four different resolutions, where each resolution gets increased by multiplying the number of
cells by a factor of ~3. Note that the simulation labeled "Higher" is identical to our fiducial
one. We show the convergence for the kinetic energy as a function of time and for (v,),, as a
function of radius r in figure 4.23. (vy),, is the absolute value of the vertical component of the
velocity, mass-averaged over a spherical shell at each radii. As Dong and Stone (2009) state,
(vy) should be indicating convergence quite well since it is a proxy for the buoyant motion of
the bubbles. This does not become very clear by looking at figure 4.23. The two lowest and
the two highest resolutions seem to coincide with each other, but looking at all of them there
is no asymptotic convergence towards higher resolutions identifiable. The difference becomes
even more noticeable for the kinetic energies and hints at whether we resolve KHI or not. For
both of the higher resolutions, length scales of the perturbations of the KHI seem to be resolved,
which induce turbulent motions at the bubble interface and thus higher levels of kinetic energy.
In addition, those fluid cells get dissolved and mixed faster with the ambient gas, which slows
down the rising bubble as it expands, damping (v,) a little bit. In fact, we do want the KHI
to be resolved in order to be able to infer how effectively Braginskii viscosity suppresses the
macro-scale instabilities. Therefore, we focus on analysing the fiducial run as it is very close to
our highest resolution simulation both quantitatively in terms of Ey;, and (v,) and qualitatively
in terms of morphology. We expect, if we would have gone even one step higher in resolution, it
would still resemble the curves of our highest resolution. We note that increasing the resolution
even further would not be easily achievable, because the Bragingkii timestep is proportional to
the cell size squared, Atpag o (Az)? (see section 2.4.1).
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Figure 4.23.: Left: Convergence test plotting the kinetic energy for each of our hydrodynamic resolutions. The
resolution labeled "Higher" is identical to our fiducial resolution. We set the next higher resolution
by increasing the number of cells N by a factor of ~3. Right: Convergence test plotting the vertical
component of the velocity, mass averaged over a spherical shell as a function of radius of that shell
at t/to = 5.

We also compare the bubble morphology for each of our four resolutions in figure 4.24. The
passive scalar mass fraction is plotted to focus on differences due to mixing. The global evolution
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has been already analysed in section 4.1, which we will not repeat here. We confirm that the
first two and the last two resolutions show similar morphologies to each other. A main difference
between both groups is that the rise velocity of the bubble front scales with resolution. This
correlation has been found for jet-inflated bubbles as well (Bourne and Sijacki, 2017; Weinberger
et al., 2017). The bubble front travels further in higher resolution simulations, which implies
that it is important to sufficiently resolve the velocity gradient. It can also be clearly seen that
the two big eddies, induced by KHI, and the mixed bubble gas they drag along with them, get
much better resolved with higher number of cells. This is needed to quantify e.g. viscous heating
(see section 4.1.3). The highest resolved simulation shows higher tracer mass fractions at the
top of the bubble, which indicates a suppression of RTI compared to the fiducial resolution run.
Also the eddies stay more compacted and pronounced over time.
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Figure 4.24.: Projected slices of the z-y midplane showing the tracer mass fraction Xy, for each of our hydrodyn-
amic resolutions. Each panel spans a spatial domain corresponding to dimensions z € [-1.579, 1.5 7]
and y € [0,379]. The thin projections in z-direction have width dr = 0.066 ro centered at z = 0.

As already mentioned above, there seems to be a jump in mixing content of bubble material
with the ambient gas between the medium and the fiducial resolution. We quantify the amount of
mixed gas by plotting the normalised volume fraction as a function of the tracer mass fraction at
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time ¢/ty = 8 in figure 4.25. Both of the higher resolution runs have their values of the covering
volume fraction shifted towards lower tracer mass fractions compared to the lower resolution runs.
The former ones also peak at higher volume fractions of mixed gas. This shows quantitatively
that our higher resolved simulations result in more mixing. This is in contrast to the resolution
studies by Bourne and Sijacki (2017) and Ehlert et al. (2018) with jet-inflated bubbles, where
they find mixing to be suppressed at higher resolutions. In Bourne and Sijacki (2017) and Ehlert
et al. (2018) this is due to less numerical mixing in AREPO. We believe our higher resolutions
induce more mixing because the hydrodynamic KHI is significantly better resolved than in our
lower resolution runs. Indeed, KHI rolls are visible at the leading edge of the bubble in our
two higher resolved runs, but not in the lower resolution runs. In order to understand why our
simulations have mixing via KHI and Ehlert et al. (2018) do not, we estimate the growth rate of
the KHI in the two setups. To quantify the growth rate of the hydrodynamic KHI, we take its
dispersion relation for a planar sheet in the incompressible, inviscid limit Chandrasekhar 1981,
see also section two in Berlok and Pfrommer (2019):
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where k is the wavenumber (related to the wavelength of the roll by £ = 27/X), Av is the
flow velocity and § is the density contrast 6 = ppup/pamb — 1. The growth rate o is given by
the imaginary part of equation (4.15), such that 0 = —Im(w). Thus, for a density contrast
of phub/pamp = 1072 we get a growth rate of o ~ 0.2Av k, which resembles our model setup.
Ehlert et al. (2018) fix the density contrast to be ppup/pamp = 1074, which yields a growth rate
of o &~ 0.02Av k. So in our simulations, the KHI is one order of magnitude more efficient than
in the setup by Ehlert et al. (2018). Since numerical dissipation depends on the grid resolution
and the KHI growth rate is proportional to the wavenumber, ergo the grid resolution (Berlok
and Pfrommer, 2019), we conclude that the large difference in density contrast might explain
why mixing is not suppressed in our fiducial simulation.
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Figure 4.25.: Normalised volume covering fraction of a given tracer mass fraction of the hydrodynamic runs for
each of our numerical resolutions at time t/to = 8 to show the mixing efficiency of the bubble. The
volume covering fraction is plotted in accordance to Ehlert et al. (2018).
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Chapter 5.

Discussion

We have shown in section 4.4 with our simulations that not even a turbulent ICM is capable of
sufficiently heating the cluster atmosphere to levels of radiative cooling in a volume filling fashion.
Our heating estimates are thereby restricted to only consider parallel viscous heating rates arising
from anisotropic pressures. Additional heating channels need to be taken into account for a total
picture, but quantifying all of them would be far beyond the scope of this thesis. A promising
source is heating by mixing as supported by Hitomi observations of the Perseus cluster core
(Hillel and Soker, 2017). The heating-mixing mechanism is caused by dissipation of modes
induced by KHI. To get the heating rate via mixing of the ambient cluster gas we would need to
calculate the time derivative of the ambient thermal energy, fv u(Xpup — 1) dV, since we expect
the thermal energy at the bubble rim to increase if mixing is dominant (Yang and Reynolds,
2016a). This estimate will still not yield how much of the heating is due to mixing, because an
uncertain fraction of this rate is due to pdV work. Since our ICs are based on the setup by Dong
and Stone (2009), we can refer to their findings that the internal energy of buoyant bubbles
only increases by a few percent at late times concluding that heating by mixing is not very
effective for a initially static ICM. However, Dong and Stone (2009) do not include a turbulent
configuration of the ambient gas in their studies. Actually, a turbulent atmosphere enhances
mixing in comparison to our quiescent ICM with the same thermal-to-magnetic pressure ratio.
But the turbulent mixing rate does not become more efficient than the 3 = 10° case and even for
the latter Dong and Stone (2009) find that changes in internal energy are not notable. Hence,

we suppose that mixing is subdominant as a heating source in our simulations.

If we want to increase the heating rate based on viscous heating alone, we probably need
to include AGN-driven bubbles in our ICs, where lobes are inflated self-consistently by sub-
relativistic jets. These jets will drive and inject turbulent energy into the cluster core region
with high amounts of vorticity in their wake. Additionally, the jet interior will have a highly
tangled magnetic field, whose field lines get strongly bended. This turbulent confinement leads to
increasing levels of rate of strain and magnetic field strength and eventually higher Q rates. How
much closer that viscous heating rate will be to Q~ compared to our setup with artificially static
bubbles might depend on the specific jet model implementation. So for instance, whether multiple
epochs of jet activity will be simulated to inject turbulent modes on a roughly constant rate,
which can ultimately lead to isotropic jet heating of the entire cluster core region (McNamara
and Nulsen, 2012). Here, isotropic means that due to jet precession and atmospheric pressure
gradients multiple sequently inflated lobes can possibly deposit their energy via weak shocks
and sound waves (Bambic and Reynolds, 2019) over much of the cluster volume of the inner
atmosphere. Such a fully turbulence-driven cluster atmosphere will theoretically be capable of
balancing Q" /Q~ ~ 1 as we have shown in figure 4.18.

As Kunz et al. (2011) show, the global self-regulated mechanism of viscous heating and radia-
tive cooling, which can mitigate cooling flows and prevent a cluster core collapse, can probably
also be established locally. If we recall equation (4.14) from section 4.3 for the viscous heating
rate (per unit volume),

i B|\*/ kgT \ 2 .
(?+ = 7. 1 27 2 || 3 -1
tim = -T2 10758 10 uG 3.34keV ergem oS
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we infer that the strong dependence on ||B]| comprises the implicit dependence on density and
the rate of strain of the turbulence. So, as turbulent velocities increase, concomitant will the
magnetic field strength and thus the dissipation rate QT will increase accordingly. Therefore,
Q™ can be locally self-regulating, in a sense that it is completely independent of the AGN, acting
as an external source providing the turbulent energy globally (Kunz et al., 2011). But with the
addition, that the local self-regulation is only maintained as long as there is enough turbulence
to pin the pressure anisotropy at its stability thresholds. Kunz et al. (2011) note that due to the
constraint on the turbulent rate of strain (set by micro-scale instabilities), not all of the external
power injected by driving turbulence is necessarily thermalized locally. In fact, the turbulence
may have an effective excess in its amount of power, where only those turbulent modes get
dissipated at the local viscous scale that do not trigger the microinstabilities. The remaining
power could be transported elsewhere (Kunz et al., 2011).

5.1. Effective Reynolds Number

By analysing the unlimited fiducial run in section 4.1, we also calculated the parallel viscous
heating rate Qf{m, where Ap is artificially restricted according to the micro-scale limiters in the
post-processing analysis. With the model x B6/N2lim the entire simulation has already been run
while applying the hard-wall limiters to the pressure anisotropy, which is affecting the evolution
of the bubble significantly (see figure 4.10). Thus, we have studied how the viscous heating rate
changes in this case in figure 4.11. St-Onge et al. (2020) find that if Apyyy, is limited to remain
within the firehose and mirror instability thresholds according to inequality (2.48), then implies
an enhanced collisionality in the unstable regions given by

Vet ~ B(bb : Vv), (5.1)

where veg is the effective ion-ion collision frequency and the right-hand side is the product of
the plasma beta and the rate of strain while assuming incompressibility (see equation (2.44)).
In case of 2 B6N2lim, we have set 3 = 10° and thus according to equation (5.1), the enhanced
collisionality will reduce viscous stresses drastically, which we could verify with our simulations,
because xt B6N2lim and hydro are very close in terms of mixing efficiency and show much lower
dye entropy S compared to the unlimited run 2 B6N2. From equation (5.1) Melville et al. (2016)
and St-Onge et al. (2020) estimate the effective parallel-viscous Reynolds number Rejefr as

vr, L
Hjeff

Rejo = ~ MY, (5.2)
where fieg = V3, Ve is the effective parallel viscosity and M = v /vy, is the mach number
(see also section 2.3.4). So, for B = 10° the effective viscosity becomes negligible and in turn
Re|jeg indicates a highly turbulent medium. As the KHI and RTT inject energy into the turbulent
cascade via field-stretching/compressing turbulent velocities (see section 2.3.3), the parallel rate
of strain scales as [bb : Vv| ~ v /I o lﬁ2/3 (St-Onge et al., 2020). Hence the magnitude of the
rate of strain is largest at the effective parallel viscous scale log, where turbulent motions are
dissipated. At this viscous cutoff, St-Onge et al. (2020) find that

-3/4
Lt ~ LRej " oc B, (5.3)

which is smaller than the unlimited viscous scale lyisc, which we have introduced in section 2.3.3:
Vi3 ~ Amfp ~ lvise > ler. While choosing higher values for 3, B is decreasing and thus lowering
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the viscous cutoff scale, which in turn requires higher numerical resolution in order to correctly
picture the level of viscosity in the system.

The effective Reynolds number also needs to be accounted for when considering the numerical
diffusivity for the highest wavenumbers limited by the grid resolution in a given volume (Donnert
et al., 2018). They argue that Re of a turbulent fluid flow is not only set by the viscous dissipation
scale but is also reduced by the cut-off of velocity power at the numerical dissipation scale. So, if
the grid resolution does not resolve the smallest scales of the velocity (or magnetic field) power
spectrum, numerical errors take away that power, which effectively reduces the rate of strain
and thus results in smaller viscous heating rates. In other words, a less diffusive numerical code
reaches higher effective Reynolds numbers and a more broader dynamical range at the same
resolution. This relation is quantified by Donnert et al. (2018) as

I \4/3
~ (L 4
Rear ~ (7)) (5.

where L is the outer injection scale, Az = V'/3 is the resolution element and e is a factor
depending on the diffusivity of the numerical method used. For the finite-volume code AREPO
this factor is assumed to be € ~ 7, which is smaller than for smoothed-particle hydrodynamics
(SPH) or hybrid codes (see references in Donnert et al. (2018)). Equation (5.4) implies that
decreasing either the factor e or the grid resolution increases Reeg, which in turn broadens the
inertial range (shrinks the effective dissipation scale), increases the velocity power (rate of strain)
on small scales and reduces viscosity.

Furthermore, bubble stability crucially depends on the numerical method used while the re-
solution is kept the same. What role different hydrodynamical schemes play on the evolution of
buoyantly rising bubbles has been studied by Ogiya et al. (2018). After initialising each simula-
tion in the same way, Ogiya et al. (2018) find that KHI fully dissolves the bubble in the ICM on
relatively short time-scales for the meshless finite mass (MFM) scheme and the RAMSES simu-
lations, while for smoothed-particle hydrodynamics (SPH) the bubble survives. So the choice of
a hydrodynamical solver can lead to systematic differences on the outcome, whether it captures
the relevant fluid instabilities.

5.2. Limitations

As pointed out in chapter 3, we model an idealized cluster core in order to isolate the effects of
Braginskii viscosity in a weakly collisional ICM. Therefore, we have to neglect some realisticness
in our cluster model in favor of comprehensibility of the underlying physical processes. Step
by step we add more complexity to our simulations, but some limitations remain untouched
nonetheless.

At first, instead of a CC, we assume a perfect isothermal ICM with no small- or large-scale
gas motions throughout the atmosphere. In real systems this is rarely the case since the gas
can be disturbed by recent merger events or the AGN activity itself. So, the cluster atmosphere
does not need to be necessarily relaxed. Nonetheless, we set buoyant bubbles into a hydrostatic
equilibrium modelled by a single- density profile. Such beta profiles sufficiently fit the density
distribution and X-ray surface brightness profiles for an isothermal cluster, but studies find that
they yield wrong mass profiles in the cluster outskirts (Xue and Wu, 2000). Nevertheless, since we
model the core region, we are not computing the mass distribution at radii near r909. Moreover,
the gravitational potential is following the beta profile instead of a more sophisticated NFW
distribution for dark matter.
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We do not model the formation and inflation of the bubble via a powerful radio jet. In fact,
we completely ignore the jet-feedback mechanism (JFM) (Soker, 2016), where jet-driven bubbles
are inflated over multiple epochs of activity. Soker (2016) find that the morphology of simulated
bubbles matches with observations, if they are inflated by slow (sub-relativistic), massive jets.
The jets play a crucial role affecting the stability and mixing efficiency of the longevity of the
bubbles after they are inflated. According to Soker (2016), studying the dynamics of the buoyant
evolution of a bubble initially at rest is not very desirable and simulations approaching the JFM
should be favoured.

As mentioned in section 2.2.1, the exact composition of the bubble interior cannot be inferred
directly due to the very low bubble densities. But observations suggest that radio lobes are
actually filled with a strongly magnetized relativistic plasma (Laing and Bridle, 2014). An
additional pressure component is needed for the bubbles to explain the discrepancy with the
observed ambient ICM pressure (Croston and Hardcastle, 2014), see section 2.2.3. CR protons
seem to be a likely candidate for such a pressure contribution. These protons could be accelerated
in the jet to build a relativistic plasma population (Pfrommer, 2013). However, we treat the
bubble material simply as a very hot thermal gas with 4 = 5/3 and omit CR protons completely,
although CR heating can become quite efficient in the very centers of CCs to offset radiative
cooling (Jacob and Pfrommer, 2017b). In addition, we assume that the lobe interior is magnetized
the same way as the ambient ICM (either uniform or turbulent), whereas numerical studies find
that very likely a toroidal magnetic field dominates and stabilizes the bubble inflated by energetic
jets (O’Neill and Jones, 2010; Huarte-Espinosa et al., 2011; Soker, 2016).

Furthermore, we lack an explicit term for radiative cooling in our energy equation (2.36). Using
equation (2.12), the cooling time at the very center of our cluster core is tcoo &~ 1.8 Gyr, which
increases to teool & 9 Gyr at the outer boundary of our domain. Hence, the cluster cooling times
are longer than the simulation times, allowing us to neglect cooling in our simulations. However
in real CCs, cooling gas accretes onto the central SMBH and induces motions. We also neglect
thermal conductivity in terms of an anisotropic heat flux tensor in our set of Braginskii-MHD
equations. On the one hand, anisotropic conduction can make the radial temperature gradient
unstable in CCs and thus introduce the heat flux driven buoyancy instability (HBI), which may
suppress anisotropic thermal conduction (Kunz et al., 2012; McNamara and Nulsen, 2012). On
the other hand, if the CC is threaded with a tangled magnetic field, thermal conductivity is
suppressed below the Spitzer value by at least one order of magnitude (McNamara and Nulsen,
2007). Conductive heating is neither thermally stable (Kunz et al., 2011) nor can it balance
radiative cooling throughout the core (Yang and Reynolds, 2016b), but probably becomes efficient
in the outer skirts of the cluster (Jacob and Pfrommer, 2017a).

We also consider the plasma fluid as a mono-phase fluid, only consisting of fully ionized
hydrogen, whereas in real clusters the hydrogen mass fraction is about 3/4 (with 1/4 helium
mass fraction and negligible metal fraction). Taking this into account would not just tune the
mean molecular weight, it would also affect the viscosity coefficient, since v then depends on
the collision frequencies v_i1, vi_pe and vie_pe (see Appendix B in Berlok and Pessah 2015).

Lastly, we do not attempt to include the temperature dependence of v} o T5/2 /p according
to Spitzer (1962) in our calculations. However, Reynolds et al. (2005) state that they could
confirm with their simulations that the evolution of the bubbles is not qualitatively affected by
the constant non-Spitzer || assumption. On the other hand, the temperature dependent viscosity
coefficient inside lobes would very likely be unphysically large. If such a bubble is i.e. 100 times
hotter (and in turn 100 times less dense) than the ambient ICM, the Spitzer viscosity would be
three orders of magnitude greater. Therefore, numerical simulations use an upper limit for pgp,
(Kingsland et al., 2019).
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Chapter 6.

Conclusions and Future Perspective

We have performed 3D Braginskii-MHD simulations of artificial AGN-inflated bubbles in an
isothermal cluster core to study the buoyant rise of these bubbles and its evolution including

the effects of weak magnetic fields and anisotropic viscosity. We have varied different cases of

viscosity (constant factor, un-/limited, isotropic) and the magnetic field (geometry, strength) to

increase the level of complexity step by step in order to get a comprehensible picture on the

impacts on the modelled ICM. Our conclusions are as follows:

1.

If the magnetic tensions are negligibly weak (8 = 10°) and Braginskii viscosity sufficiently
strong, the bubble evolution is drastically altered whether the pressure anisotropy Ap is
bounded due to micro-scale instabilities or not. If pressure anisotropy is limited within
marginal stability levels, the very high plasma beta shrinks the range of Apy;y, significantly
and concomitant the viscous stresses are highly suppressed by the microinstabilities such
that they can no longer prevent the bubbles from disruption, resembling the inviscid case.
If Ap is not limited, viscous stresses are capable of effectively suppressing macro-scale
instabilities like RTT and KHI such that the bubble rim stays coherent over much longer
time-scales compared to the inviscid case. Independent of Ap, we show that a very high
density contrast between bubble and ambient gas density suppresses KHI as well.

. Anisotropic dissipation of momentum transport is distinctively affecting the bubble mor-

phology by initiating uniformly aligned magnetic field lines into a weakly collisional plasma.
In the direction parallel to the field, macro-scale instabilities are efficiently suppressed, while
having little effect perpendicular to the field.

The magnetic field is not dramatically enhanced at the bubble front as it buoyantly rises.
The field lines are probably not compressed as much to form a efficient draping layer in
order to provide sufficient stability.

. We computed the mixing efficiency of the bubble interior with the ambient gas in three

different ways by deriving the volume covering fraction, the gas clumping factor and the dye
entropy S. We conclude that analysing the dye entropy is the most insightful method while
being intellegibly to interpret. We find the following ordering: Shydro > Slim > SBrag > Siso-

. Isotropic Navier-Stokes viscosity resembles observed X-ray cavities quite well and suppres-

ses RTT and KHI effectively over the entire simulation time. None of our other simulated
models reaches mixing rates as low as with isotropic viscosity. However, we are probably
overestimating the isotropic viscosity coefficient by a factor of ~ 800.

Using a stronger magnetic field, where 3 = 10? is in accordance with observed values of
galaxy clusters, reveals an invariance in bubble evolution in terms of mixing efficiency and
viscous heating regardless of whether limiting pressure anisotropy or not. We show that
the plasma beta is high enough to yield a broader range for the rate of strain such that the
production of Apy, rarely triggers microinstabilities, effectively resulting in unsuppressed
Braginskii viscosity.

Production of anisotropic pressure leads to parallel viscous heating, which depends on
the rate of strain of turbulent motions and enhanced magnetic field strength induced by
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strongly bended field lines. The inferred viscous heating rates Q* are not high enough to

balance radiative cooling ()~ in a volume filling fashion. This shows that viscous dissipation

is not very efficient in heating the ICM in our simulations.

Averaged over the entire cluster (regardless of field geometry): Q*/Q~ ~ 1073
Averaged over the bubble region (regardless of field geometry): Q@ /Q~ < 107!
QT seems to be independent on the initial plasma beta, if one ignores kinetic limiters

As predicted by Kunz et al. (2011), if levels of pressure anisotropy reach marginal
stability thresholds throughout the entire spatial domain where 8 = 10%: QT/Q~ ~ 1

For 8 =105: Q" ~ (10 — 100) x Q;
For 8 =10% Q" ~ Q|

8. If the ICM is turbulent with an initial magnetic field following a Kolmogorov power

spectrum, not even magnetic field lines with coherence lengths greater than the bubble

size can prevent the deformation of the bubbles. The contribution of viscous heating from

ambient turbulent motions has no significant impact on the Q@ /Q™ ratio as these motions

get relatively quickly dissipated and are not re-injected again.

In future work, it will be insightful to study the effects of Braginskii-MHD on a more sophi-

sticated cool-core cluster model in order to investigate whether Braginskii viscosity is a primary

mechanism for suppressing fluid instabilities (Kingsland et al., 2019) and/or viscous heating is

a significant heating channel to viably quench cooling flows. Such advanced simulations should

include self-consistently inflated bubbles driven by AGN jets, a NFW density profile, a mixture

of relativistic CRs and hot thermal gas for the bubble interior and an initial tangled magnetic

field, whose turbulent energy will be injected over multiple AGN outbursts. The simulations

should be able to resolve the (effective) viscous dissipation scale and account for micro-scale

instabilities in form of e.g. hard-wall limiters to capture the physics of the ICM correctly.
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Xpub

Figure A.1.: Low resolution simulations of the hydro model which have been run with different values of the
smoothing parameter a for the analytical profile of the tracer mass fraction used in equation (3.11).
From left to right a is equal to 0.01, 0.05 and 0.5, respectively.
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Table A.1.: List of common physical quantities used in

this thesis. Table A.2.: List of common physical quantities, conti-

nued.
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