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Abstra
t

Feedba
k of the a
tive gala
ti
 nu
leus (AGN) to the ambient intra
luster medium (ICM) leads

to 
omplex stru
tures in the 
enter of a galaxy 
luster and is of 
ru
ial importan
e for solving

the 
ooling-�ow problem. Dynami
s of AGN-in�ated underdense bubbles provide an important

sour
e of heating as they buoyantly rise through the 
luster atmosphere. The evolutionary e�e
ts

and heating of the ICM thereby 
riti
ally depend on the bubble morphology. Ideal invis
id

hydrodynami
al simulations 
annot reprodu
e the observed 
oherent morphology, be
ause the

arti�
ial bubbles be
ome unstable to Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz

instability (KHI) and dissolve into the ICM on mu
h shorter time-s
ales than their observed

lifetimes. Therefore, additional physi
s have been 
onsidered to be important to preserve the

bubble stability, in
luding magneti
 �elds and vis
osity. Sin
e the ICM is a weakly 
ollisional,

magnetized plasma, where the 
ollision mean free path of the ions is mu
h larger than their

Larmor radius, mi
ros
opi
 transport of momentum and heat be
omes highly anisotropi
. Hen
e,

we perform Braginskii-magnetohydrodynami
 simulations in an isothermal 
luster 
ore employing

the moving-mesh 
ode AREPO while applying adaptive mesh re�nement. For the �rst time, we

quantify parallel vis
ous heating rates of buoyantly rising bubbles to 
larify whether vis
ous

heating 
an o�set radiative 
ooling and study the signi�
an
e of Braginskii vis
osity on the

bubble dynami
s. We show that Braginskii vis
osity mainly suppresses RTI and KHI parallel to

the magneti
 �eld lines, while having minor e�e
ts on modes perpendi
ular to the �eld. We �nd

that anisotropi
 vis
ous dissipation of turbulent motions is not very e�
ient in heating the ICM

in a volume �lling fashion. Sin
e the vis
ous heating rate is sensitive to pressure anisotropy,

it 
an be suppressed if mi
ros
opi
 plasma instabilities are triggered, whi
h pin the pressure

anisotropy down to 
ertain limits for marginal stability. Simulating 
luster atmospheres with

magneti
 �elds having β = 100 reveals an invarian
e in bubble evolution in terms of mixing

e�
ien
y and vis
ous heating rates regardless of whether pressure anisotropy is limited or not.

If so, mi
ro-s
ale instabilities are rarely triggered e�e
tively resulting in unsuppressed Braginskii

vis
osity. If however the magneti
 tensions are negligibly weak (β = 106) the bubble evolution

is drasti
ally altered depending on whether the pressure anisotropy is bounded within levels of

marginal stability. If so, vis
ous stresses are highly suppressed by the mi
roinstabilities su
h that

they 
an no longer prevent the bubbles from disruption, resembling the invis
id 
ase.
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Zusammenfassung

Die Rü
kkopplung eines aktiven galaktis
hen Kerns (AGN) zum umgebenen Intra
luster-Medium

(ICM) führt zu komplexen Strukturen im Zentrum eines Galaxienhaufens und ist von wesentli
her

Bedeutung um das Abkühlungs�uss -Problem zu lösen. Die Dynamiken von AGN-aufgeblähten

Blasen geringer Di
hte stellen eine wi
htige Quelle zur Wärmeentwi
klung bereit, während diese

in der Atmosphäre des Haufens auftreiben. Dabei hängen die evolutionären E�ekte und das Er-

wärmen des ICMs kritis
h von der Gestalt der Blase ab. Ideale, ni
ht-viskose, hydrodynamis
he

Simulationen können die beoba
htete, einheitli
he Form ni
ht reproduzieren, weil die synthetis-


hen Blasen aufgrund von Rayleigh-Taylor (RTI) und Kelvin-Helmholtz Instabilität (KHI) ge-

stört werden und si
h bereits innerhalb von Zeitskalen kleiner als ihre beoba
htete Lebensdauer

im ICM au�ösen. Daher werden zusätzli
he physikalis
he Eigens
haften angenommen, unter an-

derem Magnetfelder und Viskosität, um die Blasenstabilität zu gewährleisten. Da das ICM ein

s
hwa
h kollisionsgetriebenes, magnetis
hes Plasma ist, wo die mittlere freie Weglänge zwis
hen

Ionenkollisionen viel gröÿer ist als deren Larmorradius, werden der mikroskopis
he Transport

von Impuls und Wärme anisotropis
h. Darum führen wir Braginskii-magnetohydrodynamis
he

Simulationen in einem isothermis
hen Clusterkern aus unter Einsatz des dynamis
hen Mesh
odes

AREPO und Anwendung einer adaptiven Meshverfeinerung. Erstmalig quanti�zieren wir viskose

Wärmeraten von auftreibenden Blasen um zu klären, ob viskose Erwärmung das Abkühlen dur
h

Strahlung ausglei
hen kann und um heraus zu �nden, wel
he Signi�kanz Braginskii-Viskosität auf

die Blasendynamiken hat. Wir zeigen, dass Braginskii-Viskosität vorrangig RTI und KHI entlang

der Magnetfeldlinien unterdrü
kt, jedo
h vers
hwindenden Ein�uss auf die Moden senkre
ht zum

Feld hat. Wir stellen fest, dass anisotropis
he, viskose Dissipation von turbulenten Bewegungen

ni
ht sehr e�zient ist, um das ICM in einer volumenfüllenden Weise zu erwärmen. Da die viskose

Wärmerate stark mit der Dru
kanisotropie korreliert, kann diese unterdrü
kt werden, sobald mi-

kroskopis
he Plasmainstabilitäten getriggert werden, wel
he wiederum die Dru
kanisotropie auf

bestimmte Grenzen der Randstabilität festsetzen. Die simulierten Clusteratmosphären mit Mag-

netfeldern der Stärke β = 100 zeigen eine Invarianz der Blasenevolution auf bezügli
h der Ver-

mis
hungse�zienz und der viskosen Wärmeraten unabhängig des Falles, ob die Dru
kanisotropie

begrenzt gehalten wurde oder ni
ht. Gesetzt diesen Fall, werden die mikroskopis
hen Instabi-

litäten nur sehr selten getriggert, was e�ektiv in eine ni
ht unterdrü
kte Braginskii-Viskosität

resultiert. Falls die magnetis
hen Kräfte allerdings verna
hlässigbar s
hwa
h sind (β = 106),

wird die Blasenentwi
klung drastis
h verändert, je na
hdem ob die Dru
kanisotropie innerhalb

der Randstabilität begrenzt wurde. Dies vorausgesetzt, werden die viskosen Spannungen stark

unterdrü
kt und können ni
ht länger verhindern, dass die Blasen zerrissen werden, was wiederum

den ni
ht-viskosen Fall widerspiegelt.
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7 Chapter 1. Introdu
tion

Chapter 1.

Introdu
tion

Deep images of Chandra and XMM-Newton observations of galaxy 
lusters have revealed 
omplex

stru
tures in their 
ores su
h as 
avities in X-ray surfa
e brightness maps (Birzan et al., 2004).

These 
avities are in�ated by the intera
tion of powerful radio jets, whi
h are driven by an

a

reting super-massive bla
k hole (SMBH) in the 
entral brightest 
luster galaxy (BCG), with

the ambient intra
luster medium (ICM) (Worrall, 2009). The ICM is a di�use, hot plasma,

whi
h radiates thermal bremsstrahlung in X-rays (Voit, 2005) on time-s
ales 
onsiderably shorter

than the Hubble time in the very 
enters of then so-
alled 
ool-
ore 
lusters (CCs) (Fabian and

Sanders, 2007). Su
h expe
ted 
ooling �ows are not observed in form of signi�
ant levels of

star formation (Peterson and Fabian, 2006). Feedba
k of the a
tive gala
ti
 nu
leus (AGN) to

the ICM might be the most promising me
hanism for solving the 
ooling �ow problem in CCs

(M
Namara and Nulsen, 2012). Dynami
s of AGN-in�ated underdense, high entropy bubbles

provide an important sour
e of heating as they buoyantly rise through the 
luster atmosphere

(Fabian, 2012), be
ause inferred heating rates are 
apable of balan
ing radiative 
ooling of the

ICM (Ra�erty et al., 2006). Numeri
al simulations of AGN feedba
k have been used in order

to study the underlying physi
s needed to reprodu
e the observed evolution of buoyant bubbles

(Soker, 2016; Ehlert et al., 2018). Su
h bubbles, like the northwest 
avity of the Perseus 
luster,

remain 
oherent and avoid being shredded by Rayleigh-Taylor instability (RTI) and Kelvin-

Helmholtz instability (KHI) over the bubble lifetime, . 100Myr (Fabian et al., 2011). However,

ideal invis
id hydrodynami
al simulations 
annot reprodu
e the observed morphology as the

bubbles be
ome unstable to RTI and KHI and dissolve into the ICM on mu
h shorter time-s
ales

(S
annapie
o and Brüggen, 2008; Brüggen and S
annapie
o, 2009). Therefore, additional physi
s

have been 
onsidered to be important to preserve the bubble stability, in
luding magneti
 �elds

(Ruszkowski et al., 2007; Dursi and Pfrommer, 2008), vis
osity (Reynolds et al., 2005; Gardini,

2007) or both (Dong and Stone, 2009; Kingsland et al., 2019).

Sin
e the ICM is weakly magnetized (Carilli and Taylor, 2002), a magnetohydrodynami
al

(MHD) des
ription of the plasma might be inevitable. Ideal MHD simulations with simplisti
 �eld

topologies show that buoyant bubbles 
an be su�
iently stabilized suppressing �uid instabilities

at the interfa
e if the magneti
 �eld lines are aligned parallel to the bubble surfa
e (O'Neill

et al., 2009; Dong and Stone, 2009). Real 
luster atmospheres however likely 
ontain a turbulent

magneti
 �eld (S
heko
hihin and Cowley, 2007), whi
h enhan
es mixing of bubble material with

the ambient gas 
ompared to a quies
ent ICM. Hen
e, vis
ous e�e
ts might also be important

for the bubble dynami
s, whi
h is also indi
ated by the low estimates of the Reynolds number

of the intra
luster gas, Re ≈ 50-100, if assuming the standard Spitzer 
oe�
ient of vis
osity

(Spitzer, 1962). Although hydrodynami
al simulations in
luding vis
osity show that vis
ous

stresses 
an quen
h the growth rates of RTI and KHI perturbations and maintain the observed

bubble morphology (Reynolds et al., 2005), these studies su�er from the simpli�ed assumption

that momentum transport in the ICM is isotropi
. In fa
t, the ICM is a weakly 
ollisional,

magnetized plasma, where the 
ollision mean free path of the ions is mu
h larger than their

Larmor radius (Kunz et al., 2012). Thus, mi
ros
opi
 transport of momentum and heat be
omes

highly anisotropi
 as the ions are basi
ally tied to the magneti
 �eld lines and are only s
attered

in between at ea
h Coulomb 
ollision. To a

ount for these fundamental property 
hanges, ideal

MHD is extended by anisotropi
 heat 
ondu
tion and vis
osity to be
ome so-
alled Braginskii-

MHD (Braginskii, 1965).
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So far, there have not been many studies of AGN-in�ated buoyant bubbles in
luding the e�e
ts

of Braginskii-MHD. Dong and Stone (2009) 
onsidered Braginskii vis
osity along magneti
 �eld

lines and studied the dynami
s and lifetimes of initially stati
 bubbles depending on di�erent

(uniform) �eld topologies. They �nd that models using isotropi
 versus anisotropi
 vis
osity pro-

du
e quite di�erent results. The latter only suppresses RTI and KHI parallel to the magneti
 �eld

lines on ma
ros
opi
 s
ales, while having minor e�e
ts on inter
hanging modes perpendi
ular to

the �eld. Kingsland et al. (2019) studied anisotropi
 vis
osity of self-
onsistently jet-in�ated 
a-

vities in a turbulent environment. They �nd that the evolutionary dynami
s drasti
ally depend

on whether the anisotropi
 vis
ous dissipation of momenta is suppressed by plasma instabilities

on mi
ros
opi
 s
ales. Su
h mi
roinstabilities are triggered where pressure anisotropies 
aused

by turbulent stresses and 
on
omitant 
hanges in magneti
 �eld strength ex
eed 
ertain thres-

holds for marginal stability (S
heko
hihin et al., 2005). If the produ
tion of pressure anisotropy

is pinned down to these limits, whi
h is motivated from kineti
 theory (Rosin et al., 2011), ef-

fe
ts due to Braginskii vis
osity might also be limited and 
onsiderably overstimated otherwise

(S
heko
hihin et al., 2008).

The two previous simulation studies by Dong and Stone (2009) and Kingsland et al. (2019) did

not estimate the parallel vis
ous heating rates arising from the pressure anisotropy with respe
t to

the lo
al dire
tion of the magneti
 �eld. As theoreti
al studies �nd, vis
ous heating is assumed

to be 
omparable with radiative bremsstrahlung 
ooling in a weakly 
ollisional, magnetized

ICM (Kunz et al., 2011). Furthermore, this heating-
ooling balan
e is thermally stable in a

probably self-regulating manner. Therefore, we study parallel vis
ous heating as a promising

heating me
hanism for quen
hing 
ooling �ows and preventing 
luster 
ore 
ollapse. For the

�rst time, in this thesis we estimate vis
ous heating rates for simulations of buoyantly rising

bubbles in a 
luster atmosphere. We perform a number of di�erent simulations designed to have


omprehensible initial 
onditions (ICs) with a 
ontrollable set of parameters in order to study

the signi�
an
e of pressure anisotropy. This allows us to isolate the e�e
ts of Braginskii-MHD

in our simulations. Our �rst set of ICs aims to reprodu
e the �ndings of Dong and Stone (2009)

by employing the moving-mesh 
ode AREPO (Springel, 2010) while applying adaptive mesh

re�nement (AMR). Thereby, we study both a weak and a strong magneti
 �eld, and whether

pressure anisotropy is limited or unlimited by kineti
 instabilities. Our se
ond set of ICs is

identi
al to the �rst one, now enhan
ed by introdu
ing a turbulent magneti
 �eld. This allows

us to advan
e to more and more sophisti
ated 
luster properties, while studying the impa
t of

Braginskii vis
osity on the bubble dynami
s and quantifying whether vis
ous heating rates 
an

o�set radiative 
ooling rates.

The stru
ture of this thesis is as follows. In 
hapter 2 we introdu
e the basi
 physi
s of galaxy


lusters, AGN-in�ated bubbles and the weakly 
ollisional ICM and give on overview of AREPO,

the numeri
al 
ode we have used to perform our simulations. We present our numeri
al setup

and des
ribe our treatment of vis
osity in 
hapter 3. The subsequent analysis of our simulations

is dis
ussed in 
hapter 4 in
luding the bubble evolution, the mixing e�
ien
y and estimates of

the vis
ous heating rate for di�erent ICM parameters. We dis
uss our results in 
hapter 5 and


on
lude our �ndings in 
hapter 6.
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Chapter 2.

Theoreti
al Ba
kground

In this 
hapter we set the fundamental framework needed in order to be able to understand

the methods used throughout this thesis and to 
omprehend our obtained results. We start

by des
ribing basi
 properties of galaxy 
lusters and segue from the 
ooling �ow problem into

AGN feedba
k and how AGN-in�ated bubbles theoreti
ally 
ontribute to solving the 
ooling


atastrophe. In the next se
tion we 
hara
terize the physi
s of the plasma in whi
h the bubbles

are in�ated into and how anisotropi
 vis
osity enters the Braginskii-MHD equations des
ribing

this ICM. The last se
tion gives an overview on the numeri
al 
ode AREPO we have used to


ompute our set of simulations presented later on.

2.1. Galaxy Clusters

2.1.1. Properties in the opti
al window

Galaxy 
lusters are the largest gravitationally bound obje
ts in the Universe. They extend out

to virial radii of R200 ∼ 1-3Mpc (Peterson and Fabian, 2006), where R200 is the radius at

whi
h the mean 
luster density equals 200 times the 
riti
al density of the universe ρcrit. They


an have number of member galaxies anywhere from 50 (poor 
luster) to several thousand (ri
h


luster). Cluster galaxies are 
ollisionless tra
ers of the gravitational potential and its dynami
al

state. They have to a good approximation a Gaussian velo
ity distribution with dispersions

around σv ≈ 1000 km/s for a ri
h 
luster (Carroll and Ostlie, 2014). For a relaxed 
luster, using

Maxwell's equipartition theorem, the galaxy dispersion along the line of sight 
an be related to

the temperature of the 
luster as T ∝ σ2
v (Voit, 2005).

Approximating the dynami
al time-s
ale of 
lusters yields tdyn ∼ RG/σv ≈ 1Gyr ≪ tH ,

where RG = GMcl/σ
2
v ≈ 1Mpc is the gravitational radius and tH = 1/H0 is the Hubble time

(S
hneider, 2015). The dynami
al time-s
ale is de�ned as the amount of time it takes for a

typi
al galaxy to traverse the 
luster along its diameter. Sin
e tdyn is mu
h shorter than the age

of the universe, a typi
al 
luster 
an be assumed to be in dynami
al equilibrium. This justi�es

using the virial theorem for estimating the mass of a typi
al galaxy 
luster, adopting the notation

from Pfrommer (2020),

2Ekin = −Epot ⇒ Mgalσ
2
v =

GMclMgal

rcl
⇒ Mcl ≈ 1015 M⊙ (2.1)

In fa
t, a typi
al mass range for 
lusters is 1013-1015M⊙ (S
hneider, 2015). However, adding

up all the luminous stellar mass within the galaxies only unveils a fra
tion of the 
luster mass

(M⋆ = 1/50Mcl). This was the original te
hnique used by Fritz Zwi
ky in 1933 to arrive at a large

mass-to-light ratio of the Coma 
luster (M⊙/L⊙ ≈ 400, Zwi
ky 1933). From this he 
on
luded

that 
lusters must 
ontain 
onsiderably more mass than indi
ated by their individual galaxies,

otherwise they would have been dispersed long ago. This dis
repan
y of the gravitating and

luminous mass in galaxy 
lusters led Zwi
ky to the postulation of the existen
e of dark matter.

The question arises as to whether the appli
ation of the virial theorem is still justi�ed 
onsidering

that the main fra
tion of mass is not 
ontained in the luminous galaxies themselves. The mass

derivation sket
hed in equation (2.1) remains valid as long as the spatial distribution of galaxies

follows the total mass distribution. If the latter is non-spheri
al or the velo
ity distribution of
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member galaxies is anisotropi
, proje
tion e�e
ts need to be 
onsidered (S
hneider, 2015).

2.1.2. Properties in the X-Ray window

A portion of Zwi
ky's postulated missing mass was dis
overed with the Einstein Observatory

(HEAO-2) in 1978 (Gia

oni et al., 1979). They revealed that 
lusters of galaxies 
ontain an

intra
luster medium (ICM) emitting X-rays from mu
h of the 
luster's volume and not just by

individual point sour
es. In fa
t, galaxy 
lusters are the brightest, extended extragala
ti
 X-

ray emitting sour
es with luminosities around LX ∼ 1043-1045 erg/s (S
hneider, 2015). This

radiation 
an be dete
ted throughout the 
luster out to several megaparse
s. The ICM 
an

be des
ribed as a hot (T ∼ 107-108 K), dilute (ne ∼ 10-3-10-2 cm-3
) intra
luster gas that

is distributed homogeneously and �lling the 
luster's gravitational potential well (S
hneider,

2015). The observed X-ray spe
trum resembles the 
hara
teristi
s for opti
ally thin thermal

bremsstrahlung emission. Des
ribing the gas temperature in terms of parti
le energies, kBT ≈
1-10 keV, most of the elements of the ICM are fully ionized, ex
ept for re
ombination lines of

highly-ionized metals like iron (Fe XXV at 8.8 keV and Fe XXVI at 9 keV), sili
on and neon

(Carroll and Ostlie, 2014). We will negle
t the line emissions and treat the ICM further on

as a fully ionized, pure hydrogen plasma, where number densities and temperatures (Hitomi

Collaboration et al., 2018) of the ele
trons and the ions are the same. The emissivity via thermal

bremsstrahlung (free-free radiation) is de�ned as (S
hneider, 2015)

ǫffν =
32πZ2e6nine

3mec3

√

2π

3kBTme
exp

(

− ~ω

kBT

)

gff(T, ν) ∝ n2, (2.2)

where Ze is the ele
tri
al 
harge of the ion spe
ies with Z = 1 for hydrogen, ni,e are the number

densities for the ions and ele
trons, T is the gas temperature and gff is the Gaunt fa
tor depending

on the 
ollision frequen
y ν. The Gaunt fa
tor is usually of order unity in 
lassi
al physi
s and

only varies from one if quantum e�e
ts play an important role (Dopita and Sutherland, 2003).

The remaining quantities are 
onstants with their usual meaning, me is the ele
tron mass, c

is the speed of light, kB is the Boltzman 
onstant and ~ is Plan
k's 
onstant, whi
h are also

summarized in table A.1. The right-hand side of equation (2.2) 
lari�es the proportionality of

bremsstrahlung emission to be ǫffν ∝ nine = n2
. Sin
e these emission pro
esses are 
ollisional,

the power radiated per unit volume s
ales with the number density squared, proje
tion e�e
ts by

measuring surfa
e brightness be
ome irrelevant. In addition, the gas temperature seems to be a

very good measure for the 
luster mass, meaning that it is equal to the virial temperature of the


luster potential. We 
an now estimate the mass for a typi
al, relaxed galaxy 
luster following

Pfrommer (2020),

Eth = Epot ⇒ 3

2
kBT = µmp

GMcl

rcl
⇒ Mcl ≈ 1015 M⊙, (2.3)

where mp is the proton mass and µ = 0.5 is the mean mole
ular weight for a pure hydrogen

plasma. Integrating equation (2.2) over all frequen
ies and along the line-of-sight through the


luster results in X-ray surfa
e brightness maps, from whi
h the mass density pro�le 
an be

inferred (Longair, 2011). Integrating the latter over the 
luster volume yields the total gas

mass, whi
h is approximately Mgas ≈ 1/7Mcl (Voit, 2005). Hen
e, some of Zwi
ky's postulated

dark matter is found in the form of the hot ICM, observed via its ele
tromagneti
 emission by

looking at a di�erent waveband. This be
omes more 
lear in �gure 2.1, where we 
ompare the

observed X-ray and opti
al images of the Perseus 
luster 
ore. Sin
e no signi�
ant amounts of

the remaining missing matter 
an be dire
tly seen in any other waveband, this matter must be
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non-baryoni
, only intera
ting gravitationally. Summarizing the 
omponents of the 
luster mass

shows, that around 2% is made up of stars, around 13% is due to hot gas and the remaining 85%

is 
ontributed by dark matter (Carroll and Ostlie, 2014).

Figure 2.1.: Left : Deep Chandra X-ray surfa
e brightness map of the Perseus 
luster showing its inner 260 kp


in both dimensions. The highly-resolved di�use X-ray emission reveals bulk gas motions and distin
t

substru
tures at the 
luster 
ore. Regions of displa
ed emissivity are 
alled X-ray 
avities. Right :

Mat
hed opti
al image with Hα line-emitting �laments around the 
entral giant ellipti
al galaxy

NGC 1275. Both �gures are taken from Fabian et al. (2011).

2.1.3. Modelling the X-ray emission

By using numeri
al simulations astrophysi
ists are interested in how to infer the gas and mass

distribution of the 
luster, whi
h is to model, to mat
h with the properties of the ICM from

the observed X-ray radiation. The derivations presented in this se
tion are following S
hneider

(2015). Consider the adiabati
 speed of sound in the 
luster gas to be

cs ≈
√

γ
p

ρg
=

√

γ
kBT

µmp
≈ 1000

km

s

(

T

108 K

)1/2

(2.4)

for a typi
al gas temperature of T = 108 K, where γ = 5/3 is the adiabati
 index, p = nkBT is

the gas pressure and ρg = nµmp is the gas density. The sound-
rossing time of the 
luster is thus

tsc ≈ 2RG/cs ≈ 1Gyr, whi
h is 
onsiderably shorter than the lifetime of the 
luster, whereas

the latter 
an be approximated by the age of the universe. tsc is also roughly the time-s
ale

on whi
h deviations from the pressure equilibrium are evened out. Therefore, the gas 
an be

in hydrostati
 equilibrium, under the premise that the last major merger happened longer ago

than the sound-
rossing time itself and the AGN has not inje
ted energy into the ICM via jet

feedba
k during su
h a time period (see se
tion 2.2.4). Under these 
onditions, the galaxy 
luster

is 
alled to be relaxed. The appli
ation of hydrostati
 equilibrium requires to assume that the

net a

eleration dv/dt of the gas at any point is zero and that we 
an negle
t external for
es.

The Euler equation for 
onservation of momentum for an ideal, in
ompressible �uid then reads

dv

dt
= −∇p

ρg
+ g = 0 (2.5)

where P is the gas pressure, ρg is the gas density and g is the gravitational a

eleration whi
h

is related to the gravitational potential Φ by g = −∇Φ. This relation des
ribes how the gravi-

tational for
e is balan
ed by the pressure for
e. In a spheri
ally symmetri
 
ase equation (2.5)
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be
omes

1

ρg

dp

dr
= −dΦ

dr
= −GM(r)

r2
, (2.6)

where M(r) is the total mass 
ontained within radius r from all forms of matter. Plugging in

p = ρgkBTg/(µmp) from the ideal gas law yields

M(r) = −kBTgr
2

Gµmp

(

d ln ρg(r)

dr
+

d ln Tg(r)

dr

)

. (2.7)

Assuming that the gas temperature is spatially 
onstant, equation (2.7) simpli�es using T (r) =

Tg, and the mass pro�le of the 
luster 
an be determined solely from the density pro�le of the

gas. Considering su
h an isothermal gas distribution, a 
ommonly used method of �tting the

X-ray data is the so 
alled β-model (Cavaliere and Fus
o-Femiano, 1976).

ρg(r) = ρg,0

[

1+

(

r

r0

)2
]

-3β/2

(2.8)

Here, ρg,0 is the 
entral gas density and r0 is the 
ore radius, the 
hara
teristi
 length s
ale

within whi
h the density pro�le �attens out. The index β is the ratio of the kineti
 energies of

tra
ers of the gravitational potential and the mean thermal energies of the ICM gas parti
les:

β = σ2
gal/σ

2
gas. Using β ≈ 2/3 is a good �t for the X-ray emission of many 
lusters (S
hneider,

2015). However, espe
ially for 
ool-
ore 
lusters (see se
tion 2.1.5) a better �t for the density

distribution is given by the double β-model (Xue and Wu, 2000; Santos et al., 2008).

2.1.4. Dark matter halos

Galaxy 
lusters form where waves of primordial density �u
tuations interfere 
onstru
tively after

the Big Bang (Kravtsov and Borgani, 2012). Most of the 
lusters mass is 
ontained in form of

dark matter (DM), whi
h 
lumps in dark matter halos. These halos assemble in �lamentary

stru
tures throughout the universe. A

ording to this hierar
hi
al stru
ture formation model,


lusters form at the interse
tion of these �laments through mergers of smaller groups of galaxies

and in�owing gas. The ri
hest 
lusters are formed the latest and are generally found in the

densest regions of the 
osmi
 web (Longair, 2011). The evolution of the 
osmi
 web is highly

non-linear and must be modeled by numeri
al simulations.

The primordial gas 
ollapses following the DM potential. The di�use and relatively 
old-

in�owing gas is then a

reted and sho
k-heated. The higher temperature of the gas slows down

the gravitational 
ollapse and the gas starts to virialize. Although the gas is heated by the

a

retion sho
ks, they alone are not su�
ient to rea
h the observed temperatures of the ICM of

about 108 K. Se
ondary a

retion sho
ks develop if substru
tures merge at the inner region of

a 
luster that was already heated. The 
ollisional sho
ks propagate through the dense hot gas

and heat it to the observed values (Dolag et al., 2008; Ha et al., 2018).

In 1997, Navarro, Frenk & White (NFW) showed that 
old dark matter halos in N-body

simulations have a universal density pro�le, well �t by a double power-law (Navarro et al., 1997).

This is the so 
alled NFW pro�le, whi
h is the most popular parametrization model of dark

matter halos. Its density pro�le is given by

ρ(r) =
ρcritδc

r
rs

(

1 + r
rs

)2 , (2.9)
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where ρcrit = 3H2
0/(8πG) is the 
riti
al density of the universe, rs = r200/c is the s
ale radius, δc

is the 
hara
teristi
 overdensity of the halo and c is the so 
alled 
on
entration, whi
h is higher

the earlier halos form. H0 is the Hubble 
onstant given by H0 = 100h km/s/Mpc, where h is

the dimensionless Hubble parameter. Beyond radii rs the pro�le falls o� ∝ r−3
and within rs it

�attens 
onsiderably proportional to r−1
.

The virial radius r200 is en
losing a mean overdensity of 200 times the 
riti
al density. This

implies for the total halo mass M200 that

M200

(

4π

3
r3200

)−1

= 200 × ρcrit (2.10)

and the mean density of the halo is given as

ρhalo =
M(< r200)

V200
=

∫ r200
0 4πr2ρ(r)dr
(

4π
3 r3200

) . (2.11)

2.1.5. Cooling Flow Problem

By modelling the ICM in se
tion 2.1.3, we assumed hydrostati
 equilibrium, but negle
ted that

the gas 
ontinuously looses internal energy due to its emission. Therefore we need to 
onsider

the 
ooling time-s
ale tcool, de�ned as the time the gas would need until all of its thermal energy

Eth = 3
2nkBT is radiated away by equation (2.2) (S
hneider, 2015),

tcool(r200) =
Eth

ǫff
≈ 7.5 × 1010 yr,

where ǫff is the emissivity integrated over all frequen
ies, whi
h is 
al
ulated in equation (2.13)

below. Hen
e, tcool(r200) > tH ≈ 13.8Gyr is larger than the age of the universe, whi
h allows

a hydrostati
 equilibrium to be established throughout the 
luster. However, sin
e ǫffν ∝ n2
,

the density may be
ome su�
iently large in 
enters of 
lusters to yield tcool < tH at a 
ertain

threshold, where the gas is able to 
ool quite e�
iently. We 
an estimate the 
ooling time-s
ale

at the 
luster 
ore, normalised to quantities in our ICs (see se
tion 3.1) to

tcool(r0) ≈ 0.96 × 109 yr
( n

0.03 cm−3

)−1
(

Tg

3.88× 107 K

)1/2

(2.12)

Therefore, after ex
eeding the threshold, the hydrostati
 equilibrium 
annot be maintained in

those 
luster 
ores. This means, that the 
luster gas has to �ow inwards, where it gets 
om-

pressed. By this, the in�owing masses build a 
ounterpart to the gravitational for
e due to the

in
reased gas pressure. A new hydrostati
 equilibrium is set up with higher 
ore density but lower

temperature (S
hneider, 2015). But the in
reased density will further a

elerate the des
ribed


ooling pro
ess on
e again, leading into a 
ooling 
atastrophe.

These so-
alled 
ooling �ows (CFs) have indeed been observed in the 
enters of massive 
lusters,

in the form of a sharp 
entral peak in X-ray emission. Those 
lusters are 
alled 
ool-
ore 
lusters

(CCs). CCs are 
hara
terized by low 
ooling times tcool . 1Gyr (Hudson et al., 2010; Voigt

and Fabian, 2004) and low entropies S0 = kBTn
−2/3 ∼ 10 keV cm2

(Voit and Donahue, 2005;

Pfrommer et al., 2012) in their inner 
ore radius r0 ∼ 10 kpc. However, the expe
ted high star

formation rates and mass deposition rates




M, at whi
h the gas should 
ool and �ow inwards due

to this 
ooling, have not been measured observationally on large-s
ales by Chandra or XMM-

Newton and are signi�
antly overestimated. A

ording to the standard 
ooling �ow model, one

also expe
ts to �nd gas at ever de
reasing gas temperatures down to Tg & 0 keV. Instead, as



2.1. Galaxy Clusters 14

revealed spe
tros
opi
ally, a minimum temperature seems to exist, below whi
h the gas 
annot


ool (Peterson et al., 2003). This threshold is usually at one half to one third of the 
luster's

virial temperature at around 1 keV (Fabian and Sanders, 2007; Blanton et al., 2010).

These �ndings point to a lo
al heating pro
ess, whi
h prevents the gas temperature to fall

below a 
ertain threshold, while not dominating the 
ooling pro
ess. In fa
t one observes a

quasi-balan
e between heating and 
ooling (M
Namara and Nulsen, 2012). Sin
e the 
ooling

�oor is kept 
onstant over long periods (Bauer et al., 2005), we are looking for a relatively gentle,

quasi-
ontinuous distributed heat sour
e. This is pointing towards a self-regulated feedba
k loop

via a
tive gala
ti
 nu
lei (AGNs) (see se
tion 2.2.4).

To see how mu
h feedba
k is needed to 
ounter the 
ooling 
atastrophe in the 
ore region, we


onsider the total X-ray luminosity as a proxy for the 
ooling luminosity. In order to do that we

rede�ne the volume emissivity ǫff as an energy 
ooling rate by integrating equation (2.2) over all

frequen
ies, whi
h yields

ǫff =

∫ ∞

0
ǫffν dν =

∫ ∞

0

Cn2

√
kBT

e−hν/kBTdν = Ch-1n2
√

kBT = Λ(T )n2, (2.13)

where Ch-1k
1/2
B is a 
onstant and Λ(T ) is a 
ooling fun
tion depending on the temperature of

the gas. It is dominated by bremsstrahlung above T ∼ 1 keV and by metal lines below T ∼ 1 keV.

In our isothermal 
luster model, we have

Λ(T ) = 8.9 × 10-24 erg cm3 s-1
(

T

3.88 × 107 K

)1/2

. (2.14)

For a more sophisti
ated 
ooling fun
tion of the ICM, we refer to Kunz et al. (2011) and referen
es

therein. Now we 
an estimate the 
ooling luminosity LX by integrating the 
ooling rate ǫff over

the 
luster volume assuming spheri
al symmetry. By following the derivations by Pfrommer

(2020) and normalising the 
ooling luminosity to quantities in our ICs (see se
tion 3.1), we get

LX =

∫

V
ǫffdV = Λ0

√

kBT

kBT0
4π

∫ ∞

0
n2(r)r2dr

≈ 4× 1044
(

r0
80 kpc

)3
( n0

0.03 cm-3

)2
(

kBT

3.34 keV

)1/2

erg s-1, (2.15)

where Λ0 is the 
ooling fun
tion with T0 at the very 
luster 
enter and n2(r) is adopted by a

β-pro�le (see equation 2.8). Hen
e, we are looking for a heating pro
ess with an average rate of

∼ 1044 erg/s in order to balan
e the 
ooling losses in the ICM.
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2.2. AGN feedba
k

As already des
ribed phenomenologi
ally in se
tion 2.1.5, hydrodynami
 simulations modelling

the gas dynami
s of DM halos in
orporating solely radiative 
ooling and gravitational heating


annot reprodu
e the 
entral gas densities, temperatures and baryon fra
tions of the hot ICM

(M
Namara and Nulsen, 2012). Baryons respond to more 
omplex pro
esses like energeti
 feed-

ba
k from supernova explosions and AGNs. Multiple studies of observational X-ray data by

XMM-Newton and Chandra have shown that radio AGN are probably the prin
ipal driving me-


hanism heating the hot atmospheres of galaxy 
lusters and suppressing 
ooling rates (see Soker

(2016) and referen
es therein). Other heating me
hanisms have been suggested over the years

and are brie�y dis
ussed in se
tion 2.2.5.

As the 
luster atmosphere 
ools and 
ondenses into mole
ular 
louds and 
old 
lumps, stars

are able to form and the ambient gas is a

reted by a super-massive bla
k hole (SMBH) found

in the 
entral brightest 
luster galaxy (BCG) of almost all CCs. From a simpli�ed point of view,

the a

retion �ow onto the bla
k hole laun
hes 
ollimated out�ows whenever the a

reted gas

has a large enough spe
i�
 angular momentum (Soker, 2016). More spe
i�
ally, these out�ows

are relativisti
 jets powered the 
entral AGN. The jets are 
omposed of 
osmi
 rays and toroi-

dal magneti
 �elds, whi
h 
auses non-thermal radio-syn
hroton and γ-ray emission via parti
le

a

eleration. At some point the momentum of the relativisti
 out�ow slows down due to the

ram pressure of the ambient ICM. The 
luster gas gets pushed away by the jet �uid, thereby

in�ating large radio-emitting lobes on either side of the nu
leus. These lobes 
oin
ide with 
a-

vities observed in the X-ray band, as in e.g. Hydra A (M
Namara et al., 2000), Perseus (Fabian

et al., 2000) or Abell 2052 (Blanton et al., 2001). We will further on use the terms 
avity and

lobes, referring to bubble observations in the X-ray or the radio regime, respe
tively. The whole

pi
ture is shown in �gure 2.2 for the Perseus 
luster. As the jets terminate, the bubbles deta
h

and are now inje
ted at the bottom of the gravitational 
luster potential. The bubbles are hotter

(Tbub ≈ 100×Tamb estimated observationally (Soker, 2016)) and underdense (ρbub ≈ 0.01×ρamb

used numeri
ally (Dong and Stone, 2009)) 
ompared to the ambient gas of the ICM. Hen
e, the

bubbles are not stati
 and start to rise buoyantly and subsoni
ally up the 
luster atmosphere

(Pfrommer, 2020). Subsoni
ally, be
ause the bright rims surrounding many a
tive 
avities are

observed to be 
ooler than the ambient ICM. This implies that they have been uplifted without

being strongly sho
ked (Boett
her et al., 2012).

2.2.1. Jet-in�ated bubble properties

In order to reprodu
e a proper evolution of bubbles, numeri
al simulations show that jet in�ation


an su�
iently stabilize the bubbles (Sternberg and Soker, 2008) in order to mat
h their longevity

with observations (see se
tion 2.2.2). The morphology and geometry of the bubbles is strongly

a�e
ted by the properties of the jets in�ating them. The primary parameter thereby is jet power

(Ehlert et al., 2018).

Cavity systems show a large spread in terms of their sizes. Typi
al observed radii have values

of rbub ∼ 10-15 kpc (Ra�erty et al., 2006), but 
an go up to 200 kp
 in diameter for the Hydra

A 
luster or MS0735.6+7421 (Nulsen et al., 2005; M
Namara et al., 2005). The distribution

of the ratio between the proje
ted distan
e R between 
avity 
enter and the nu
leus and the


avity radius rbub shows a strong peak at R/rbub ≃ 2. Meaning that jet-in�ated bubbles travel

their own diameters after they have deta
hed from the jet and before they will dissipate into the

atmosphere and will not be dete
table any longer (M
Namara and Nulsen, 2007).

Looking at the buoyan
y time-s
ale, 
avities have typi
al ages of tbuoy ∼ 107 − 108 yr. The

time taken between single inje
tions of bubbles is of the same order of magnitude, e.g. in Perseus
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Figure 2.2.: Large-s
ale Chandra �nal 
omposite residual surfa
e brightness map of the Perseus 
luster in the

X-ray band taken from Fabian et al. (2011) . Overlaid are low-frequen
y radio 
ontours taken from

data of the Very Large Array (VLA) (Weeren et al., 2020). The beam size is shown on the top-right


orner. In the 
enter lies the giant ellipti
al galaxy NGC 1275, whose SMBH powers bipolar jets

into the ICM, whi
h are in�ating under-dense bubbles. Those are simultaneously visible as X-ray


avities and radio lobes (labeled inner 
avities). As the bubbles rise buoyantly outwards the 
luster

atmosphere, they be
ome dis
onne
ted from the feeding jets (labeled outer or ghost 
avities).

(M
Namara et al., 2000). This implies that there are periods of time where no jets are laun
hed,

e.g. in Ophiu
hus (Werner et al., 2016). The so-
alled 
y
li
al jet feedba
k me
hanism (JFM)

(Soker, 2016) is based on the fa
t, that CCs with two or more bipolar pairs of bubbles are seen,

like in Perseus (Fabian et al., 2000) or Hydra A (Wise et al., 2007). In addition, even 
lusters

inhabiting very powerful AGNs like MS0735.6+7421 show large-s
ale symmetry in their 
avities,

whi
h is visible at times after multiple outburst 
y
les have happened (M
Namara and Nulsen,

2012). Simulations also show (O'Neill and Jones, 2010; Mendygral et al., 2012) that a 
y
li
al

JFM is able to make the lobes more spheri
al, as observed. Instead, a steady, 
ontinuous jet

support produ
es highly elongated fronts (Vernaleo and Reynolds, 2007).

Nevertheless, some properties of bubbles 
annot be determined yet from observations like the

temperature or the general 
ontent of the �lling gas, be
ause of the very low densities inside

the bubbles (Soker, 2016). Magneti
 �elds are assumed to be sub-dominant within the bubbles

and small-s
ale vorti
es 
ould dominate their energy 
ontent (Hard
astle and Croston, 2005;

Hard
astle and Krause, 2014). The alignment of magneti
 �elds in radio lobes 
an be derived

from the degree of polarization of syn
hroton radiation. For FR-type I jets, whi
h are 
onsidered

throughout this thesis, the magneti
 �eld lines are found to be typi
ally perpendi
ular to the jet

axis (Hawley et al., 2015).

2.2.2. Bubble stability

While theoreti
al studies suggest that bubbles should be rapidly disrupted in a CF environ-

ment, observations indi
ate that they live for a long time, meaning that the lobes sustain their

morphology with a spheri
al front over ∼ 100Myr, analysed observationally (Ra�erty et al.,

2008) and numeri
ally (Bourne et al., 2019). However, some development of RTI are seen at the


enter-front of some bubbles, e.g. in Abell 2052 (Blanton et al., 2001, 2003) or in the northwest
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bubble in Perseus (Fabian et al., 2002; Soker et al., 2002). Advan
es in numeri
al simulations

have been showing that buoyantly rising bubbles are disrupted through KHI or RTI. Disruption


an be delayed if the instability is suppressed by either turbulent di�usion (S
annapie
o and

Brüggen, 2008), magneti
 draping (Ruszkowski et al., 2007; Dursi and Pfrommer, 2008; O'Neill

et al., 2009), favorable dynami
s (Pizzolato and Soker, 2006), or CRs (Ehlert et al., 2018). This

thesis will fo
us on the suppression of instabilities by vis
osity and investigate whether vis
osity


an preserve 
oheren
e of rising bubbles by damping the small-s
ale perturbations, whi
h was

espe
ially studied by Reynolds et al. (2005) and Dong and Stone (2009). Thus, the model setup

for the ICs, des
ribed in se
tion 3.1, follows the ones used by those two papers.

As long as the lobes remain inta
t, they will maintain approximate pressure balan
e with their

surroundings while rising buoyantly. As their pressure de
reases with time, their enthalpy will

also de
rease, whi
h releases energy into the ICM, mostly as kineti
 energy in the �ow around

rising bubbles (M
Namara and Nulsen, 2007).

2.2.3. Cavity power

Sin
e almost every CC with tcool . 1Gyr hosts an a
tive radio sour
e in their BCG (Mittal

et al., 2009), su�
ient amount of energy 
ould have been also generated via syn
hroton radiation.

The syn
hroton emission, whi
h is visible in the radio, is due to CR-ele
trons gyrating around

magneti
 �eld lines. Comparing 
avity power with bolometri
 radio power reveals that the

mean me
hani
al power is 100-1000 times larger than the syn
hroton power (Bîrzan et al., 2008;

O'Sullivan et al., 2011), making the syn
hroton radiation highly ine�
ient for heating the ICM.

Hen
e, the AGN's energy required depends on its me
hani
al power and not its radio luminosity.

If we assume that the rising 
avities are governed by buoyan
y, their ages and mean jet power


an be estimated (Churazov et al., 2002; Birzan et al., 2004). As the X-ray 
avities are in�ated,

they do pV work (me
hani
al energy) against the ICM. At the same time, as the relativisti
 jets

displa
e the ICM at the lo
ation of the 
avities, they provide the pressure supporting the latter

in form of internal energy Eth. Hen
e, the total energy required to 
reate the 
avity is equal to

its enthalpy, (Gitti et al., 2012)

H = Eth + pV =
γ

γ − 1
pV =

{

2.5 pV, for γ = 5/3,

4 pV, for γ = 4/3,
(2.16)

where γ is the ratio of spe
i�
 heats of the 
avity plasma, whi
h depends on whether the pressure

support is supplied by relativisti
 or non-relativisti
 plasma. Looking at the measured syn
hroton

emission, one has to assume equipartition between the energy of the parti
les and the energy of

the magneti
 �eld of the bubbles. From this, one 
an infer the pressure of the bubbles, whi
h

is only ∼ 10% of the pressure of the surrounding ICM (Worrall, 2000; Croston et al., 2008). In

order to keep the bubbles stabilized, either a very hot thermal gas (whi
h is not observed) or a

non-thermal 
omponent has to be present (M
Namara and Nulsen, 2012). If the radio emitting

lobes were �lled with a non-relativisti
 thermal plasma, the temperature would need to ex
eed

≈ 20 keV in order to be undete
table by its thermal X-ray emission (Blanton et al., 2003; Gitti

et al., 2007). Therefore, it is more likely to assume that the bubbles are �lled with relativisti


plasma, giving γ = 4/3 and H = 4pV per 
avity. The 
avities may be �lled with more 
omplex

gas (with a non-thermal 
omponent to stabilize the bubble (M
Namara and Nulsen, 2012)), but

observations sele
ted for large, fully-grown bubbles are roughly 
onsistent with MHD simulations

using 4 pV per 
avity (Mendygral et al., 2011). However, in our simulations we assume that the

bubble interior is non-relativisti
 and we will negle
t the e�e
ts of CRs in the rest of the thesis.

In order to estimate the AGN heating rate based on the 
avity power, we need to obtain the
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ratio between work done by the two bubbles and the buoyan
y time. The derivations 
overed

hereafter are following the le
ture notes from Pfrommer (2020). The 
avity power is the produ
t

of the volume of the bubble and the surrounding pressure. Normalizing it to quantities in our

ICs (see se
tion 3.1) yields

pV = 2× nambkBT × 4

3
πr3bub ≈ 3× 1059 erg

(

rbub
20 kpc

)

( namb

0.03 cm-3

)

(

kBT

3.34 keV

)

. (2.17)

Subs
ripts amb and bub are abbreviations for the ambient and bubble 
omponent of that quan-

tity, respe
tively. The expression is multiplied by two to a

ount for both of the bipolar aligned

bubbles. The buoyan
y rise time 
an be 
omputed by balan
ing the buoyan
y for
e Fbuoy a
ting

upon the bubble with the drag for
e Fdrag exerted by the ram pressure on the bubble, yielding

the terminal velo
ity vt (M
Namara and Nulsen, 2007)

‖Fbuoy‖ = −gVbub(ρamb − ρbub) = −Cd

2
σρambv

2 = ‖Fdrag‖

vt =

√

2gVbub

σCd

ρamb − ρbub
ρamb

≈
√

2gVbub

σCd
, (2.18)

where σ is the 
ross-se
tion of the bubble, g is the gravitational a

eleration and Cd is the drag


oe�
ient, whi
h depends on the bubble geometry and the Reynolds number (see se
tion 2.3.4).

For a Ma
h number of M ≈ 0.7 the drag 
oe�
ient is Cd ≈ 0.6 (Churazov et al., 2001). In

the last step we assumed ρbub ≪ ρamb. As a last step it is also useful to introdu
e an estimate

for the sound-
rossing time tsc normalised to quantities in our ICs (over the gravitational radius

RG), whi
h is given by

tsc
(2.4)

=
RG

cs
≈ 3× 108 yr

(

RG

240 kpc

)

( cs
800 km s-1

)

-1
.

Together with the rise velo
ity from equation (2.18) we 
an now dedu
e the buoyan
y time tbuoy
for a bubble at distan
e R from the 
avity 
enter to the SMBH,

tbuoy =
R

vt
≈ 0.6× tsc

(

R

2rbub

)1/2

≈ 4× 1015 s ≈ 1.3× 108 yr, (2.19)

where the �rst approximation is derived in Birzan et al. (2004). Our estimate is in agreement

with observations (see se
tion 2.2.1). The buoyan
y time gives a reasonable estimate for the

later stage of a 
avity system, long after it was inje
ted by its AGN (M
Namara and Nulsen,

2007). We 
an �nally 
ombine equations (2.19) and (2.17) to obtain the AGN heating rate,

LAGN ≈ 2.5 pV

tbuoy
≈ 7.5× 1059 erg

4× 1015 s
≈ 2× 1044 erg s-1 ≈ 0.5× LX . (2.20)

Hen
e, the AGN heating rate based on 
avity power is 
omparable to the X-ray 
ooling lumino-

sity, obtained from equation (2.15), whi
h is supported by observational analysis of the 
ooling

region in CCs (Ra�erty et al., 2006; Gitti et al., 2012). This suggests that heating via AGN

feedba
k is the primary me
hanism providing roughly enough energy (in synergy with additional

heating sour
es) to substantially prevent 
ooling �ows in 
ool-
ore 
lusters (M
Namara and Nul-

sen, 2012). How mu
h energy is 
ontributed by other proposed heating 
hannels is an ongoing

�eld of studies (see se
tion 2.2.5).
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2.2.4. Heating by AGN feedba
k

As des
ribed in se
tion 2.2.3, the overall energeti
s between jet-indu
ed power and 
ooling lu-

minosity seem to be �tting. Neither 
ooling nor heating is dominating. Even the most powerful

AGNs with the shortest 
ooling times in CCs (e.g., MS0735.6+7421 (M
Namara et al., 2005))

show stable and long-lived CFs. Additionally, as pointed out in se
tion 2.2.1, AGNs trigger out-

bursts on time-s
ales shorter than the 
ooling time-s
ales in their 
enter. In fa
t, tbuoy . tcool,

meaning that generally 
avities are younger than the time needed for the ambient gas to 
ool.

This implies that jets are laun
hed frequently enough to prevent runaway 
ooling (M
Namara

and Nulsen, 2012). Steep abundan
e gradients show that there is no large-s
ale mixing taking

pla
e (Fabian, 2012). This gentle, quasi-
ontinuous (on time-s
ales . 108 yr, (Ra�erty et al.,

2008)) heating pro
ess is shown as a �attening of the 
entral entropy pro�les (Voit and Donahue,

2005).

The general heating me
hanism works as follows. As a buoyant 
avity rises, it displa
es gas,

whi
h must fall inward to �ll the low-density wake. There, kineti
 energy is generated from

gravitational potential energy, whi
h is then dissipated lo
ally (M
Namara and Nulsen, 2007).

The energy 
reated this way by the 
avity is equal to the 
on
omitant loss of enthalpy thermalized

in its wake (Churazov et al., 2002). However, it is still under debate, how the thermal energy

is supplied, distributed and dissipated on the right spatial s
ales to balan
e radiative 
ooling

throughout the 
ore of the 
luster. The exa
t 
oupling me
hanism has not been identi�ed yet.

(M
Namara and Nulsen, 2012; Fabian, 2012; Soker, 2016) Di�erent theories are brie�y mentioned

in se
tion 2.2.5.

X-ray observations by Hitomi of the Perseus 
luster 
ore reveal low velo
ity dispersions (Hitomi

Collaboration et al., 2018). Hillel and Soker (2017) 
on
lude, that heating by small-s
ale mixing

of hot bubble plasma with the ICM is very likely. The mixing is taking pla
e in the wake where

vorti
es have formed. These vorti
es also ex
ite sound waves and turbulen
e, but they only

make up . 20% to the heating pro
ess. Sho
ks 
ontribute even less Hillel and Soker (2017). The

mixing is depositing CRs and magneti
 energy as well.

Looking at the ICM as a whole, no single heating pro
ess seems to be dominant over all

radii (M
Namara and Nulsen, 2007). Many of them are probably relevant. At the innermost

part, weak sho
ks are likely to be most signi�
ant. At radii where the lobes are formed, 
avity

heating takes over and on larger s
ales, sound damping may be
ome dominant. At the outermost

s
ales, thermal 
ondu
tion is the most e�
ient. All in all, heating by AGN feedba
k seems to

be dominating from the inside, while 
ondu
tive heating is working from the outside of a CC

(M
Namara and Nulsen, 2007).

2.2.5. Other Heating Me
hanisms

We des
ribed how the AGN-in�ated 
avities theoreti
ally inhibit roughly enough energy to ba-

lan
e radiative 
ooling via bremsstrahlung while preventing the 
ooling 
atastrophe. As already

mentioned, there is no 
onsensus how this AGN energy is a
tually thermalized and whi
h pro-


esses are key for transfer the energy from the jet-in�ated bubbles to the ambient ICM. Many

di�erent heating me
hanisms have been proposed over the years and dis
ussing all of them will

be far beyond the s
ope of this thesis. Therefore, we only list re
ent studies of the most 
ommon

dis
ussed heating models, whi
h in
lude AGN-initiated weak sho
ks (Li et al., 2016; Guo et al.,

2017), dissipation of sound waves (Fabian et al., 2017; Bambi
 and Reynolds, 2019), dissipation

of internal waves (Zhang et al., 2018), dissipation of turbulen
e (Zhuravleva et al., 2014), mixing

of hot bubble gas with the ICM (Hillel and Soker, 2017), gas sloshing (Ueda et al., 2020), CRs

(Ja
ob and Pfrommer, 2017b; Ehlert et al., 2018) and thermal 
ondu
tion (Yang and Reynolds,
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2016b).

In this work, we will fo
us on vis
ous heating in se
tion 4.1.3.
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2.3. Plasma Physi
s

2.3.1. Plasma Parameters

We have treated the ICM as a 
ompletely ionized, ideal gas in the previous se
tions, but it 
an

also be well des
ribed as a plasma �uid if the parti
le mean free path, λmfp, is mu
h shorter

than the 
hara
teristi
 system size, L (Pfrommer, 2020). To 
he
k whether this 
an be taken for

granted, we need to introdu
e some plasma parameters. Consider a non-relativisti
 hydrogeni


plasma with equal ion and ele
tron number densities, n = ni = ne, and temperatures, T =

Ti = Te. The mean mass per parti
le is then mp/2 and the (iso-)thermal speed of the ions

is vth = (p/ρ)1/2 = (2kBT/mp)
1/2

(see equation (2.4)). Together with the ion-ion 
ollision

frequen
y, νii = 0.06 × lnλ× niT
−3/2 s−1

(see equation (2.29)), the value of the mean free path

in a 
luster atmosphere 
an be estimated as (see ZuHone and Roediger (2016))

λmfp =
vth
νii

≈ 0.5 kpc
( n

0.03 cm−3

)

-1
(

kBT

3.34 keV

)2

, (2.21)

where lnλ ∼ 30 is the Coulomb logarithm. The 
hara
teristi
 system size 
an be estimated via

the thermal pressure s
ale height H (Kunz et al., 2012) by 
onsidering g = ρ-1dp/dr as the

gravitational a

eleration (see equation (2.6)).

H =
v2th
g

≈ 130 kpc
( n

0.03 cm−3

)

(

kBT

3.34 keV

)

( g

10−8 cm s−2

)−1
. (2.22)

Hen
e, λmfp ≪ H and the �uid des
ription of the ICM is appli
able and the plasma is said to

be weakly 
ollisional. This 
an be expressed in terms of the Knudsen number, Kn = λmfp/H,

whi
h is a dimensionless measure for 
ollisionality. Sin
e Kn ∼ 0.004, the intra
luster plasma is

not purely 
ollisional, but rather weakly 
ollisional. Plasmas with Kn & 1 would be e�e
tively


ollisionless. The ion-ion 
ollision frequen
y νii 
an also be related to the ion gyrofrequen
y

Ωi = qiB/mpc of a parti
le gyrating around a magneti
 �eld line of 
onstant strength B due to

the Lorenz for
e. Ωi is also 
alled the Larmor frequen
y and the 
orresponding Larmor radius

(or ion gyroradius) ri is de�ned by

ri =
vth
Ωi

≈ 2npc
( n

0.03 cm−3

)

(

kBT

3.34 keV

)(

B

1µG

)−1

. (2.23)

The ratio of the Larmor radius to the 
hara
teristi
 length s
ale of the system is 
alled the

plasma magnetization parameter δi (Hazeltine and Waelbroe
k, 2004). Thus as δi = ri/λmfp ≈
10−14 ≪ 1, the ICM is magnetized, meaning that a parti
le gyrates around a magneti
 �eld

line so many times before it 
ollides with another parti
le, that we 
an say it is tied to the �eld

line. In other words, the 
ollision frequen
y is mu
h smaller than the gyrofrequen
y. Putting all

relations together, we get that ri ≪ λmfp < H.

Furthermore, turbulen
e 
an ex
ite three MHD waves, of whi
h two are similar to sound waves

(the fast and slow 
ompressive modes) and one is solenoidal (the Alfvén mode). For the latter

the Alfvén velo
ity for ions is given by

vA =
B√
4πρ

≈ 13
km

s

( n

0.03 cm−3

)−1/2
(

B

1µG

)

. (2.24)

Studies �nd that turbulent gas motions in CCs have velo
ity dispersions of several hundred km/s

at the outer s
ale of several tens of kp
, whi
h is shown both observationally with Hitomi in
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Perseus (Hitomi Collaboration et al., 2018) and numeri
ally with simulations of 
luster formation

(Miniati, 2014). This means that ICM turbulen
e is super-Alfvéni
 on the largest s
ales initially.

Therefore, magneti
 �elds are probably not very important dynami
ally on su
h s
ales and the

plasma is well shaped by �uid motions (Donnert et al., 2018). The ratio of thermal gas pressure

pth = nkBT to magneti
 pressure pB = B2/8π is des
ribed by the so-
alled plasma-β, whi
h is

a dimensionless parameter for the e�e
tive strength of the magneti
 �eld.

β =
2kBT

mpvA
=

8πnkBT

B2
≈ 4000

( n

0.03 cm−3

)

(

kBT

3.34 keV

)(

B

1µG

)−2

. (2.25)

Sin
e β is typi
ally quite high (Carilli and Taylor, 2002) it is interesting to investigate whether

weak magneti
 �elds are dynami
ally important at all in 
luster atmospheres. One goal of this

thesis is to study how su
h a weakly magnetized medium a�e
ts the evolution of buoyantly rising

bubbles.

2.3.2. ICM as a weakly 
ollisional plasma

Therefore, the ICM 
an be treated as a weak 
ollisional plasma with a weak magneti
 �eld

with ‖B‖ ∼ 1µG. In 
enters of CCs magneti
 �eld strength of tens of mi
rogauss have been

inferred, whi
h s
ale with thermal density, while 
onsidering that the plasma-β is 
onstant

(isothermal) (Clarke et al., 2001; Bonafede et al., 2010). Both the Coma and the Perseus 
luster

host a turbulent magneti
 �eld 
onsistent with a Kolmogorov power spe
trum (S
hue
ker et al.,

2004; Subramanian et al., 2006). Eviden
e for magneti
 �elds 
omes from Faraday rotation

measurements and syn
hroton emission of radio sour
es in galaxy 
lusters (Ferrari et al., 2008;

Govoni et al., 2010).

In addition, if the ICM would be governed by Coulomb 
ollisions, transport properties would

be isotropized. But sin
e the plasma is only weakly 
ollisional, the parti
les are 
oupled to the

magneti
 �eld lines, making transport of heat and momentum anisotropi
. In turn, the magneti


�eld lines are frozen into the plasma �uid and adve
ted with the bulk motions of the ambient

medium (Kulsrud and Ostriker, 2006). In other words, motions of the intra
luster gas 
auses


hanges in the magneti
 �eld strength as the �eld is dragged along with the gas �ow. This

aspe
t is related to the magneti
 Prandtl number Prm = ν/η, whi
h is the ratio of momentum to

magneti
 di�usivity. For galaxy 
lusters we get Prm ≈ 1029 ≫ 1, hen
e the vis
ous-s
ale motions

dominate (S
heko
hihin and Cowley, 2007). Su
h 
onditions indu
e a small-s
ale dynamo, whi
h

ampli�es the magneti
 �u
tuations by random stret
hing of the �eld lines on time-s
ales of 108 yr

(S
heko
hihin et al., 2005).

All this together fundamentally 
hanges the stability properties of the ICM, whi
h di�er from

those expe
ted from the S
hwarzs
hild 
riterion. This 
riterion states that an atmosphere is sta-

ble to 
onve
tion if the entropy, S, in
reases with height as dS/dr > 0 (Carroll and Ostlie, 2014).

As pointed out in se
tion 2.1.5, a positive entropy gradient is indeed observed for CCs (Pi�aretti

et al., 2006). Although the ICM is stable against 
onve
tion a

ording to the S
hwarzs
hild


riterion, it is not appli
able be
ause the ICM is a weakly 
ollisional and weakly magnetized

plasma. So the aforementioned anisotropi
 transport needs to be 
onsidered, whi
h means that

e.g. the gas pressure perpendi
ular and parallel to the lo
al magneti
 �eld be
ome unequal,

resulting in anisotropi
 vis
ous stresses. Parti
le motions perpendi
ular to the magneti
 �eld are

suppressed and motions parallel to the �eld are either un
onstrained or limited by λmfp ≪ ri.

Collisions between ions do not o

ur frequently enough to 
ountera
t the pressure anisotropy.

These e�e
ts make the ICM subje
t to fast growing instabilities on mi
ros
opi
 s
ales (between

ri and λmfp) where their des
ription by Braginskii-MHD be
omes invalid (see se
tion 2.3.6).
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2.3.3. Turbulen
e

Turbulen
e a

ording to Kolmogorov (Kolmogorov, 1941) des
ribes how the energy of a nonlinear

pro
ess is 
as
aded from large s
ales of vorti
al �uid motion to small s
ales of length l at a rate

kv, where k = 2π/l is the wave ve
tor, v is the velo
ity dispersion (the root-mean-square of the

power spe
trum at s
ale k) and l is the eddy size. For subsoni
 turbulen
e (v < vth) the velo
ity

�u
tuations are adiabati
, whi
h is implied by assuming an in
ompressible �ow, ∇ · v = 0. At

the ma
ros
opi
 inje
tion s
ale, L, energy is fed into the turbulent 
as
ade by indu
ing �uid

motions manifesting as eddies of size of the outer s
ale. This is also 
alled the driving s
ale of

the turbulent system, where in the 
ase of galaxy 
lusters the driver might be a major merger or

an AGN jet. The largest eddies break up into smaller ones due to the 
onve
tive term, v · ∇v,

in the �uid equations. Energy is being transferred at ea
h smaller length s
ale until the lo
al

kineti
 energy gets dissipated by vis
osity at the mi
ros
opi
 inner s
ale, lvisc. Here, at s
ales of

order of λmfp, vis
ous shear stresses dissipate the vorti
al motions into thermal energy and the

Lorentz for
e dissipates the lo
al kineti
 energy into magneti
 energy in 
ase of a dynamo. Note

that the dissipation s
ale is lo
ally isotropi
 while the inje
tion s
ale is highly anisotropi
. The

intermediate range of s
ales l, where L > l > lvisc, is 
alled the inertial range. At ea
h s
ale,

the 
as
ading time-s
ale is the eddy turnover time, tl = l/vl, where vl is the typi
al rotational

velo
ity a
ross the eddy. The 
as
ading itself is not depending on the driving s
ale (S
heko
hihin

and Cowley, 2007). In the inertial range, energy 
as
ading s
ales as ǫkin ∝ v2l /tl ∝ vL(l/L)
2/3

and the turbulent velo
ity s
ales as vl ∝ l1/3. This implies that the largest eddies have the

highest velo
ities and kineti
 energies, while the smallest eddies have the highest vorti
ity. In

other words, the turbulent system is driven by energy at the outer s
ale, but dominated by

vis
ous for
es at the dissipative inner s
ale. The hierar
hy of eddies 
an be des
ribed by the

energy power spe
trum E(k) (S
heko
hihin and Cowley, 2007),

v2l ∼
∫ ∞

k
E(k′)dk′ ∼ ǫ2/3k−2/3 ⇒ E(k) ∼ ǫ2/3k−5/3. (2.26)

The 
hara
teristi
 time-s
ale for turbulen
e of a typi
al galaxy 
luster to be established during

a major merger is tL = L/vL ∼ 300 kpc/(1000 km s−1) ≈ 300Myr (Brunetti and Lazarian,

2007), where vL is the velo
ity dispersion of the largest eddy at the outer s
ale L. In 
ase

that AGN-in�ated bubbles are driving turbulen
e in a relaxed ICM, the 
hara
teristi
 time-

s
ale 
an be estimated as tL ∼ 20 kpc/(400 km s−1) ≈ 50Myr (see se
tion 3.1). Observationally,

these s
ales are in agreement with turbulen
e measures using pressure maps, i.e. in the Coma


luster (S
hue
ker et al., 2004). Additionally, the vis
ous s
ale of an AGN-driven 
luster 
an

be approximated as lvisc ∼ LRe-3/4 ∼ 1 kpc (S
heko
hihin et al., 2005), where Re = 50 is the

Reynolds number based on typi
al values of the ICM (see se
tion 2.3.4). Comparing lvisc with

λmfp from equation (2.21) shows that both a
t on length s
ales of roughly the same order of

magnitude.

Turbulent �uid motions in a 
luster atmosphere 
an be indu
ed by stresses of tangled mag-

neti
 �eld lines permeating the 
luster. Con
omitantly, the magneti
 �eld power spe
trum is

also 
onsistent with a Kolmogorov power spe
trum as observations (S
hue
ker et al., 2004) and

simulations (Gaspari and Churazov, 2013; ZuHone et al., 2016) �nd for the Coma 
luster. Also

the Perseus CC (Subramanian et al., 2006) and Hydra A (Ku
har and Enÿlin, 2011) seem to

host a turbulent magneti
 �eld. Bonafede et al. (2010) and Ku
har and Enÿlin (2011) �t their

models to Faraday rotation measurements to 
onstrain the magneti
 �eld strength and to �nd

the magneti
 power spe
trum. They �nd a magneti
 �eld dependen
e on the ele
tron number
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density as

〈

B2(r)
〉

∝ n2α
e (r) (2.27)

with α = 0.4− 0.7 (Bonafede et al., 2010). These �ndings are 
onsistent with a 
onstant plasma

beta throughout the 
luster gas, sin
e β = 8πnkT/B2
.

2.3.4. Reynolds Number

As introdu
ed in the previous se
tion, a turbulent �uid 
as
ades large s
ale motions to progres-

sively smaller s
ales until vis
ous for
es be
ome important to dissipate the kineti
 energy. At

larger s
ales the �uid motion is undamped. To indi
ate at what s
ale the vis
ous dissipation

takes over, the Reynolds number, Re, is introdu
ed. The Reynolds number is a dimensionless

quantity to show whether a �uid is governed by laminar �ow or turbulen
e. It is de�ned as

the ratio between inertial and vis
ous for
es in a �uid. Hen
e, for Re ≫ 1, vis
ous for
es are

not important at all at the inertial s
ales and vorti
al motions will be produ
ed. Considering

the kinemati
 vis
osity ν = µ/ρ = λmfpvth, whi
h has units of cm2 s−1
, we 
an also de�ne the

Reynolds number as the ratio of dissipative to adve
tive time-s
ales (see Pfrommer (2020)),

Re =
tdiss
tadv

=
LvL
ν

=
L

λmfp

vL
vth

, (2.28)

where tdiss = L2/ν and tadv = L/vL. Here, L and vL are 
hara
teristi
 length and velo
ity

s
ales of system size. Therefore, Re 
an be expressed as the produ
t of the ratios of ma
ros
opi


to mi
ros
opi
 length and velo
ity s
ales. Again, for Re ≫ 1, adve
tion is dominating and

dissipation 
annot stabilize the growth of the turbulent modes.

As pointed out in se
tion 2.3.2, due to the pressure anisotropy in the ICM, heat and momentum

are transported along the magneti
 �eld lines with unit ve
tor b = B/‖B‖. So, the kinemati


vis
osity (also 
alled momentum di�usivity) parallel to b is ν‖ = µ/ρ = µ/nimp, where µ is the

dynami
 vis
osity, ρ is the density of the �uid, ni is the number density of the ions and mp is

the mass of one parti
le. An upper limit for the kinemati
 vis
osity has been found from X-ray

observations for the Coma 
luster of ν‖ . 3× 1029 cm2 s−1
on s
ales of 90 kp
 (S
hue
ker et al.,

2004). In numeri
al simulations, a 
eiling has been applied, i.e. by modelling the Perseus 
luster

with ν‖ . 1030 cm2 s−1
(Kingsland et al., 2019).

Further, µ = 0.96 × pi/νii = 0.96 × nikBT/νii (Kunz et al., 2012), where pi is the ion ther-

mal pressure, νii is the ion-ion 
ollision frequen
y, kB is the Boltzmann 
onstant and T is the

temperature of the �uid. Considering the value of νii for fully ionized plasmas (Ri
hardson,

2019),

νii =
4
√
πe4ni ln Λ

3
√
mpk

3

2

BT
3

2

= 6.0× 10-2
ni ln Λ

T
3

2

s-1, (2.29)

to be Spitzer if kB = 1.381 × 10-16 erg/K (Spitzer, 1962). This yields for the dynami
 vis
osity,

µsp = 2.2 × 10-15
T

5

2

ln Λ
g cm-1 s-1, (2.30)

where T is measured in Kelvin. We 
an now write for the Reynolds number

Re =
LvL
ν‖

=
LvLnimp

µsp
= 2.3× 10−8 ×

(

vL
vL,0

)(

L

L0

)(

n

n0

)(

T

T0

)− 5

2

× vL,0L0n0T
− 5

2

0 , (2.31)

where we used lnλ = 30 in the prefa
tor (see e.g. Dong and Stone (2009) or Kingsland et al.



25 Chapter 2. Theoreti
al Ba
kground

(2019)). We 
an use this notation to 
ompute the Reynolds number from the ratios of four easily

a

essible variables. Typi
al values for the ICM in CCs yield Reynolds numbers of order . 102

(S
heko
hihin and Cowley, 2007; Brunetti and Lazarian, 2007) if we assume Spitzer vis
osity.

The Reynolds number 
an be estimated for the ICM of the Perseus 
luster 
ore region if vL
and L are inferred from Hitomi Collaboration et al. (2016) and n and T are inferred from Fabian

et al. (2017):

Re ≈ 50

(

vL
164 km/s

)(

L

10 kpc

)

( n

0.04 cm−3

)

(

T

3.87 × 107 K

)−5/2

(2.32)

2.3.5. Braginskii-MHD

Ideal magnetohydrodynami
s (MHD) is a 
ontinuum theory that 
ombines the equations of �uid

dynami
s with Maxwell's equations to des
ribe the behavior of a magnetized 
ondu
ting medium.

It is only appli
able as a �uid approximation and does not des
ribe the individual motions of

parti
les dire
tly, whi
h would be subje
t to kineti
 theory. Instead, the distribution fun
tions,

f(~x,~v, t), are repla
ed with plasma moments su
h as density, mean velo
ity and mean energy.

These moments are taken from the Vlasov equation extended by a 
ollisional term. We refer to

Baumjohann and Treumann (1997) for a full derivation.

As pointed out in se
tion 2.3.2, the ICM is highly 
ondu
tive (Pm ≫ 1), so that its resistivity

is negligibly small. Thus a

ording to the indu
tion equation, the magneti
 �eld lines are frozen

into the plasma �uid, known as Alfvén's theorem (Alfvèn, 1942). In addition, as des
ribed

in se
tion 2.3.1, the ICM must be modelled as a weakly 
ollisional, magnetized plasma, where

λmfp ≫ ri. Therefore, on ma
ros
opi
 s
ales (greater than λmfp), the transport of momentum and

heat be
omes highly anisotropi
 along the dire
tion of the lo
al magneti
 �eld lines, making the

ideal MHD approximation inadequate. A

ounting for anisotropi
 vis
osity and heat 
ondu
tion

in form of di�usion terms leads to an extended MHD model, the so-
alled Braginskii-MHD

(Braginskii, 1965). At frequen
ies below the Larmor frequen
y Ωi and at s
ales above the ion

gyroradius ri, the fundamental equations of motion (mass 
ontinuity, momentum, indu
tion,

energy) 
an be given in 
onservative form and in Gaussian units as (see e.g. Kunz et al. (2012);

ZuHone and Roediger (2016))

∂ρ

∂t
+∇ · (ρv) = 0, (2.33)

∂(ρv)

∂t
+∇ · (ρvv +P) = ρg, (2.34)

∂B

∂t
= ∇× (v ×B) = −∇ · (vB −Bv), (2.35)

∂(ρǫ)

∂t
+∇ · [(ρǫI +P) · v +Q] = ρg · v, (2.36)

where ǫ is the energy per unit mass, so that ρǫ is the energy per unit volume with γ = 5/3 and

ρǫv is the internal energy �ux. The total energy density (kineti
, internal, magneti
) is given by

ρǫ =
1

2
ρv2 +

p

γ − 1
+

B2

8π
. (2.37)
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The pressure tensor is given by

P =

(

p⊥ +
B2

8π

)

I −
(

p⊥ − p‖ +
B2

4π

)

bb

= pI +Π+
B2

8π
I − BB

4π
, (2.38)

with total thermal pressure:

p =
2

3
p⊥ +

1

3
p‖, (2.39)

where p⊥ (p‖) is the pressure term perpendi
ular (parallel) to the lo
al magneti
 �eld with

b = B/B as the unit ve
tor and bb as a dyadi
 produ
t. The terms B2I/8π and BB/4π 
an

be re
ognized as magneti
 pressure and magneti
 tension, respe
tively. The additional terms

in equations (2.34) and (2.36) extending ideal MHD are the anisotropi
 heat �ux Q (whi
h we

negle
t) and the anisotropi
 vis
osity tensor

Π = −∆p

(

bb− 1

3
I

)

, (2.40)

where the pressure anisotropy is de�ned as ∆p = p⊥ − p‖. It arises from the 
onservation of

the �rst and se
ond adiabati
 invariants for ea
h parti
le (Chew et al., 1956). Vis
osity and

heat break these 
onservation laws. The so-
alled Chew, Goldberger & Law (CGL) equations


an be derived from the Vlasov-Landau equation by taking the moments mv2⊥/2 and mv2‖ (see

S
heko
hihin et al. (2010) and referen
es therein). If vis
osity and heat are negle
ted, then the

CGL equations redu
e to

p⊥
d

dt

(

ln
p⊥
ρB

)

= 0, p‖
d

dt

(

ln
p‖B

2

ρ3

)

= 0, (2.41)

where d/dt = ∂/∂t+v ·∇ is the Lagrangian time derivative. We refer to Berlok (2014) for a full

derivation. The �rst (se
ond) adiabati
 invariant in equation (2.41) arises from the 
onservation

of angular (longitudinal) momentum. The non-redu
ed CGL equations together with 
ollionality,

in
luding vis
osity and heat 
ondu
tion, 
an be 
ombined to get an expression for the evolution

of the Braginskii pressure anisotropy:

∆p = p⊥ − p‖ = 0.96
p

νii

d

dt
ln

B3

ρ2
(2.42)

Hen
e, in a weakly 
ollisional plasma like the ICM the produ
tion of pressure anisotropy is

being relaxed by 
ollisions, whereas would be qui
kly isotropized in a 
ollisional plasma (having

a Maxwellian distribution) (S
heko
hihin et al., 2005). As the �rst adiabati
 invariant µ =

mv2⊥/2B is only weakly broken by 
ollisions (sin
e λmfp ≫ ri), any 
hange in B leads to a

proportional 
hange in p⊥ su
h that p⊥/B = 
onst (S
heko
hihin and Cowley, 2007). We 
an

rewrite expression (2.42) by using the 
ontinuity equation (2.33) and the indu
tion equation

(2.35) to repla
e the time derivatives of ρ and B with velo
ity gradients. We may also use the

identity relating the evolution of magneti
 �eld strength with the rate of strain, assuming that

motions in the inertial range are subsoni
 (see se
tion 2.3.3),

1

B

dB

dt
= bb : ∇v, (2.43)

where : is de�ned as the tra
e of a matrix produ
t, su
h that bb : ∇v = ΣiΣjbibj∂ivj . The
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anisotropi
 pressure from equation (2.42) now reads

∆p =
p

νii
(3bb − I) : ∇v = ρν‖(3bb : ∇v −∇ · v), (2.44)

where νii is the ion-ion Coulomb 
ollision frequen
y. The prefa
tor µsp = p/νii = ρν‖ is the

dynami
 vis
osity 
oe�
ient, or simply 
alled Spitzer vis
osity in terms of ions (see se
tion

2.3.4). ν‖ is the kinemati
 vis
osity parallel to the lo
al magneti
 �eld line. This shows that

the pressure anisotropy is e�e
tively working out as an anisotropi
 vis
ous �ux and the vis
osity

tensor from equation (2.40) be
omes (Braginskii, 1965)

Π = −3µsp

(

bb− 1

3
I

)(

bb− 1

3
I

)

, (2.45)

whi
h is implemented in AREPO by Berlok et al. (2019) (see se
tion 2.4.1). While modelling a

weakly 
ollisional, magnetized plasma like the ICM, it is inevitable using the Braginskii extension

of ideal MHD, if one is interested in studying the e�e
ts of thermal 
ondu
tion and/or vis
osity.

However, e.g. the vis
ous stress tensor does not ne
essarily have to take an anisotropi
 form as

in equation (2.45). In the presented thesis, we are also interested in how Braginskii vis
osity

a�e
ts the transport pro
esses of the plasma and thus the morphology of the rising bubbles if

the vis
osity tensor is in fa
t isotropi
 and not depending on an pressure anisotropy. In this 
ase

the isotropi
 vis
ous stress tensor is simply given by (Kingsland et al., 2019) as

Πiso = −fνµsp∇v. (2.46)

This form is justi�ed if the weak magneti
 �eld is turbulent throughout the volume of a simulated


luster and isotropi
ally tangled (ZuHone and Roediger, 2016). Then fν be
omes a suppression

fa
tor a

ounting for redu
ed vis
osity (below the Spitzer value) due to averaging over the random

dire
tion of the magneti
 �eld. Not all of our simulations have an initially turbulent magneti


�eld setup, espe
ially not our �du
ial run (see se
tion 3.1). Therefore, we use a more elaborated

version where the isotropi
 vis
osity tensor is derived from the Navier-Stokes equations for a

vis
ous �ow (Muñoz et al., 2013),

Πiso = −η

(

∇v + (∇v)T − 2

3
I(∇ · v)

)

− ζI(∇ · v), (2.47)

where η = ρν0 = µsp is the shear vis
osity and ζ is the bulk vis
osity. The former is re-

ferring to 
onstant-volume shear deformations and the latter is 
orresponding to isotropi
 ex-

pansions/
ontra
tions. Note, that the bulk vis
osity vanishes for an in
ompressible �uid �ow

(∇ · v = 0) or for an ideal monoatomi
 gas, whi
h has no internal degrees of freedom if interpre-

ted as hard spheres intera
ting only through elasti
 
ollisions. Hen
e, the isotropi
 Navier-Stokes

vis
osity implemented in AREPO by equation (2.47) assumes that ζ = 0.

2.3.6. Mi
ro-s
ale Instabilities

We 
an infer from equation (2.42) that an in
reasing magneti
 �eld strength will yield a positive

pressure anisotropy and regions with a de
reasing �eld strength will have a negative anisotro-

pi
 pressure, if the density is 
onstant. Additionally, equation (2.44) shows that the pressure

anisotropy 
ontrols the rate of vis
ous dissipation down to the dissipation s
ale (order of λmfp)

and thus a�e
ts the �uid dynami
s at larger s
ales. Therefore, the Braginskii vis
osity only

dissipates su
h velo
ity gradients that 
hange the strength of the magneti
 �eld. (S
heko
hihin
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and Cowley, 2007) The remaining motions not a�e
ting B 
an in prin
iple exist below the dissi-

pation s
ale with their fastest growing modes down to the Larmor s
ale (ri ≪ λmfp), where they

a
t as mi
ro-s
ale instabilities in a weakly magnetized, high-β plasma. These rapidly growing

instabilities are not yet resolved in simulations modelling galaxy 
lusters sin
e it would require

numeri
al resolutions ranging from several nano- to kilo-parse
 s
ales and resolving

∼ 1012 orders

of magnitude is numeri
ally not a
hievable. Nevertheless, theoreti
al studies (S
heko
hihin et al.,

2008; Rosin et al., 2011) and parti
le-in-
ell simulations (Kunz et al., 2014; St-Onge et al., 2020)

show that the mi
ro-s
ale instabilities, namely the �rehose and the mirror instability, a
t su
h

that they regulate the pressure anisotropy ba
k to values within its stability boundaries. This is

also supported by dire
t solar wind observations (Chen et al., 2016). So, whenever ∆p ex
eeds


ertain thresholds (see e.g. Kunz et al. (2012)),

− B2

4π
. p⊥ − p‖ .

B2

8π
, (2.48)

the mi
ro-s
ale �rehose (left-hand side) and mirror (right-hand side) instability are triggered and

drive ∆p to marginal stability, where they saturate. In other words, the pressure anisotropy (and

thus parallel vis
osity) be
omes unphysi
ally large in weakly 
ollisional, magnetized plasma �uid

simulations, if no mi
ro-physi
al limits are implemented, whi
h would a

ount for isotropizing

the plasma to marginally stable levels. We des
ribe both mi
ro-instabilities s
hemati
ally in

�gure 2.3. It shows that if the magneti
 �eld strength gets enhan
ed via stret
hed or 
ompressed

�eld lines, the perpendi
ular pressure 
omponent be
omes dominant, whi
h ex
ites the mirror

instability. On the other hand, if B de
reases lo
ally due to turbulent velo
ities, the parallel

pressure dominates and 
an trigger the �rehose instability. We 
an rearrange the inequality

(2.48) in a way, that we get an expression, where the pressure anisotropy is pinned at marginal

stability (Kunz et al., 2011). Dividing by the total thermal pressure while 
onsidering the plasma

beta β = 8πp/B2
yields

− 2

β
.

∆p

p
.

1

β
⇒

(

∆plim
p

)

=

(

ξ

β

)

, (2.49)

where ξ = −2 for the �rehose instability or ξ = 1 for the mirror instability.

Figure 2.3.: Sket
h how �rehose and mirror instabilities emerge by bending the magneti
 �eld lines. (adopted

from S
heko
hihin and Cowley (2007)).
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The limits from inequality (2.48) are also ne
essary to avoid unphysi
al results sin
e the �uid

des
ription of the ICM by Braginskii-MHD be
omes invalid at s
ales < λmfp (S
heko
hihin

et al., 2005). Kunz et al. (2012) show that indeed the �rehose �u
tuations (whi
h are resolved in

their simulations to some extent) grow fast enough to 
ompensate the negative ex
ess in pressure

anisotropy to retain marginal stability and self-
onsistently provide a lower bound to ∆p. But the

mirror instability ex
ited by Braginskii-MHD grows substantially slower than the kineti
 mirror

�u
tuations, meaning that positive pressure anisotropies are not e�
iently regulated. Either

way, Kunz et al. (2012) �nd that in general both mi
ro-s
ale instabilities do not grow as fast

using Braginskii-MHD as they would otherwise grow using kineti
 theory sin
e the fastest modes


an not be resolved. For example, in Braginskii-MHD the �rehose instability has a maximum

growth rate o

urring at k‖H, whereas in kineti
 theory the �rehose instability a
tually has a

maximum growth rate o

urring at k‖ri, where H is the thermal pressure s
ale height and ri
is the Larmor radius (see se
tion 2.3.1). Therefore, the e�e
ts of Braginskii 
ondu
tivity and

vis
osity are probably overestimated by a fa
tor H/ri ∼ 1010-1011 (S
heko
hihin et al., 2008) in

a weakly 
ollisional, magnetized plasma.
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2.4. AREPO

The 
osmologi
al MHD 
ode AREPO (Springel, 2010) has been designed in order to 
ombine

the advantages of both Lagrangian smoothed-parti
le hydrodynami
s (SPH) methods and �nite

volume Eulerian �xed Cartesian mesh 
odes. AREPO is based on a moving unstru
tered Voronoi

mesh, whi
h allows for a quasi-Lagrangian des
ription while retaining better numeri
al 
onver-

gen
e of Eulerian 
odes (Pakmor et al., 2016). In fa
t, AREPO uses a se
ond-order a

urate

Runge-Kutta method to estimate the �uxes at ea
h time step. The Voronoi mesh is generated

from a set of points su
h that for ea
h generator point there is a 
orresponding 
ell of volume


ontaining 
ell points whi
h are 
losest to that generator point. This spatial dis
retization is


alled Voronoi tessellation and uniquely 
onstru
ts a mesh, whi
h moves with the �uid �ow and

is updated over time a

ordingly. AREPO solves the hyperboli
 
onservation laws on the moving

Voronoi mesh using a �nite volume approa
h. In 
ase of ideal MHD, the set of Euler equations


an be written in 
ompa
t form by introdu
ing a state ve
tor of 
onserved quantities U and the

�ux fun
tion F (U) for the �uid as (Pakmor et al., 2011)

∂U

∂t
+∇ · F = 0, (2.50)

where U and F (U) are given by

U =







ρ
ρv
ρǫ
B






, F (U) =







ρv
ρvv +P −BB/4π

Bv − vB
ρǫv +Pv −B(v ·B)/4π






, (2.51)

where P = pI +B2I/8π is the pressure tensor, p is the total thermal pressure and ρǫ = 1
2ρv

2 +

p/(γ−1)+B2/8π is the total energy density in Gaussian units. Note the notation and 
orrelation

with 
ontinuity, momentum, indu
tion and energy equations (2.33)-(2.36) of extended Braginskii-

MHD. The �uid state is 
omputed by taking the 
ell averages of the 
onserved quantities U for

ea
h 
ell by integrating the �uid over the �nite volume Vi of a 
ell i,

Qi =

∫

Vi

UdV. (2.52)

yielding the total mass, momentum, energy and magneti
 �eld strength 
ontained in ea
h 
ell.

The introdu
ed �uxes F are only valid for a stati
 grid, but sin
e AREPO uses a moving mesh,

the �ux over a stati
 interfa
e has been added by an additional adve
tion term UwT
owing for

the movement of the interfa
e with velo
ity w (Pakmor et al., 2011). The geometry is illustrated

in �gure 2.4. By using Gauss' theorem we 
an get the rate of 
hange in time of Qi as

dQi

dt
= −

∫

∂Vi

[

F (U)−UwT
]

den = −
∑

j

AijFij, (2.53)

where en is a normal ve
tor of an interfa
e between two Voronoi 
ells and w is the normal velo
ity

of this interfa
e. en andw des
ribe the motion of the fa
e, whi
h is fully spe
i�ed by the velo
ities

of the mesh-generating points of the two 
ells next to the interfa
e (Springel, 2010). Note, that

in Eulerian 
odes w = 0 where the mesh be
omes stati
. All the �uxes over an interfa
e are


omputed in the rest frame of the moving interfa
e, whi
h means that the interfa
e velo
ity is

subtra
ted from the equations of motion. Only the relative velo
ity between the two Voronoi


ells enters the �ux estimation and not the dynami
al �ow of the moving mesh. This has the

advantage that the �ux solutions be
ome Galilean-invariant, whereas in Eulerian methods using
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�xed Cartesian meshes the numeri
al trun
ation error grows with the �uid velo
ity (Springel,

2010). The Riemann problem is solved by using the approximative HLLD solver in 
ase of ideal

MHD (Pakmor et al., 2011).

The right-hand side of equation (2.53) resembles the Euler equations in �nite-volume form and

is derived by 
al
ulating the averaged �ux a
ross the interfa
e between 
ells i and j as

Fij =
1

Aij

∫

Aij

[

F (U)−UwT
]

dAij, (2.54)

where Aij is the oriented area of the fa
e between 
ells i and j. The �uid state is then evolved

in time by dis
retization of equation (2.53) in time to �nally yield (Springel, 2010)

Q
(n+1)
i = Q

(n)
i −∆t

∑

j

AijF̂
(n+1/2)
ij , (2.55)

where F̂ij is a time-averaged approximation of the true �ux Fij . The supers
ript (n) is denoting

the state of the system at time step n.

Furthermore, the evolving magneti
 �eld has to ful�ll the 
onstraint ∇ · B = 0 to stay

divergen
e-free. However, as the moving mesh is spatially dis
retized, numeri
al errors 
an

signi�
antly amplify the magneti
 �eld and lead to unphysi
al results (Pakmor and Springel,

2013). Hen
e, AREPO adopts the divergen
e-
leaning method by Powell (Powell et al., 1999),

where a passive adve
tion term of the �ow of the magneti
 �eld is added to the Euler equations.

This method has been implemented into the 
ode by Pakmor and Springel (2013), where the

divergen
e of the magneti
 �eld in a 
ell i is then 
al
ulated as

∇ ·Bi =
1

Vi

∑

faces

Bface · enAface, (2.56)

where Bface is the magneti
 �eld strength on the interfa
e and Vi is the volume of the 
ell.

There are numerous other features implemented into AREPO to a

ount for the novelty of

having a moving mesh and we refer to Springel (2010) and Weinberger et al. (2020) for further

details. In thesis we des
ribe only those spe
ial treatments that we a
tually have in
luded in

our simulations in se
tion 3.1, in
luding i.e. the mesh regularization, de-/re�nement 
riteria and

boundary 
onditions.

Figure 2.4.: Sket
h showing the geometry of the �ux 
al
ulation. An unsplit s
heme is used where the �ux a
ross

ea
h fa
e is estimated based on a one-dimensional Riemann problem. The �uid state is expressed

in a frame whi
h moves with the normal velo
ity w of the fa
e, and is aligned with it. Taken from

(Springel, 2010).
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2.4.1. Braginskii Module

Braginskii vis
osity is numeri
ally implemented into the moving-mesh 
ode AREPO by Berlok

et al. (2019) as a subsequent module to already existing extensions to non-ideal MHD physi
s like

isotropi
 vis
osity (Muñoz et al., 2013) and anisotropi
 heat 
ondu
tion (Kannan et al., 2016).

Operator splitting is used to solve the equations of motion (2.33)-(2.36), whi
h means that

AREPO internally alternates between a MHD time step ∆tMHD and a Braginskii vis
osity time

step ∆tBrag. Sin
e the vis
osity tensor Π only enters the momentum and the energy equation

(see se
tion 2.3.5), only su
h vis
ous terms need to be solved by the algorithm, whi
h redu
e to

ρ
∂v

∂t
= −∇ ·Π, (2.57)

ρ
∂ǫ

∂t
= −∇ · (Π · v) , (2.58)

while the density and the magneti
 �eld are kept 
onstant during the Braginskii time step. In

order to solve equations (2.57) and (2.58) in AREPO, Berlok et al. (2019) de�ne a lo
al 
oordinate

system with basis ve
tors en, em and ep at ea
h interfa
e between two Voronoi 
ells for the non-

trivial spatial dis
retization on a moving mesh. Additionally, both equations 
an be rewritten

by taking the volume average over a 
ell of volume V , su
h that

1

V

∫

V

∂(ρv)

∂t
dV = − 1

V

∫

V
∇ ·ΠdV = − 1

V

∫

∂V
Π · endA, (2.59)

1

V

∫

V

∂(ρǫ)

∂t
dV = − 1

V

∫

V
∇ · (Π · v) dV = − 1

V

∫

∂V
(Π · v) · endA, (2.60)

where the surfa
e integrals on the right-hand side are derived by applying the divergen
e theorem

with ∂V as the surfa
e of the volume and dA as an in�nitesimal area. en is the unit ve
tor of

the lo
al 
oordinate system and is orientated to be the normal to the interfa
e between the two

Voronoi 
ells. The right-hand side of both equations (2.59) and (2.60) is then approximated as

a dis
rete sum of �uxes through the fa
es of the Voronoi 
ell (Berlok et al., 2019). Thereby, a

quantity φ or its derivative is estimated at ea
h interfa
e of a Voronoi 
ell by taking a weighted

harmoni
 mean of its values at all the 
orners of this 
ell,

∂φface

∂x
=

(

∑

i

wi

∂φi/∂x

)

-1

, (2.61)

where wi is the weight of the 
orner i. In turn, the gradients ∂φi/∂x at ea
h 
orner are estimated

with the 
orresponding values for neighbouring 
ells by taking i.e. a least-squares �t of the values

of the four adja
ent 
ell 
enters (Pakmor et al., 2016).

The anisotropi
 �uxes for all Voronoi 
ells are 
al
ulated at ea
h Braginskii time step ∆tBrag,

whi
h is 
onstrained for an expli
it update of vis
osity as (Berlok et al., 2019)

∆tBrag ≤ C
(∆x)2

2dν‖
, (2.62)

where ∆x = V 1/3
is the minimum size of the 
ells, d = 3 is the number of spatial dimensions

being solved, ν‖ = µ/ρ is the vis
osity 
oe�
ient and C = 0.3 is the Courant number, whi
h is

de�ned as the ratio of the applied time step to the allowed time step (Courant et al., 1928). We


an 
ompare the Braginskii time step with the MHD time step 
onstraint given by (Springel,
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2010)

∆tMHD ≤ C
∆x

vmax
, (2.63)

where vmax is the maximum signal speed, whi
h is the sum of the adiabati
 sound speed and the

Alfvén speed, ergo e�e
tively the �ow velo
ity. Sin
e ∆tMHD ∝ ∆x and ∆tBrag ∝ (∆x)2, we 
an

infer that the MHD time step 
onstraint will generally satisfy ∆tMHD ≫ ∆tBrag. The di�erent

s
alings be
ome espe
ially 
ru
ial for highly resolved simulations, where the expli
it Braginskii

time step be
omes very small. This makes the numeri
al 
omputations very expensive, be
ause

the operator splitting requires that ∆tMHD = ∆tBrag in order to advan
e in time. Therefore,

Berlok et al. (2019) implemented a se
ond-order a

urate super-time-stepping (STS) method for

Braginskii vis
osity. STS a

elerates the Braginskii vis
osity update su
h that the 
omputational


ost s
ales down to ∆tSTS ∝ (∆x)3/2. However, we have de
ided for another approa
h instead

by using sub-
y
led time steps, whi
h means that the Braginskii vis
osity is updated n times per

global MHD time step: ∆tMHD = n×∆tBrag. Using sub-
y
ling has the advantage that it works

with lo
al time stepping and is thus faster than than STS in our 
luster simulations. We have


hosen the number of sub-
y
les to be n = 10, whi
h is the same as in Kunz et al. (2012). By

restri
ting sub-
y
ling properly, we avoid that 
hanges in the system between two 
onse
utive

global MHD time steps be
ome too large, be
ause Braginskii vis
osity has been updated too many

times, whi
h would 
ause unphysi
al behaviour following through the remaining time steps.
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Chapter 3.

Methods

In this work we intentionally fo
us on the Braginskii-MHD e�e
ts in an isothermal 
luster at-

mosphere. The signi�
an
e of pressure anisotropy 
an be better understood if testing 
ertain

parameters in our simulations is based on a 
ontrollable setup. Our �rst set of simulations, in-

trodu
ing a uniform horizontal magneti
 �eld, aims to reprodu
e the �ndings of Dong and Stone

(2009), this time applying adaptive mesh re�nement (AMR) on a moving Voronoi mesh. The

se
ond set of simulations is based on the same simplisit
 setup as the �rst, now enhan
ed by

introdu
ing a turbulent magneti
 �eld. Having di�erent levels of 
omplexity allows us to better

assess the qualitative impa
t of anisotropi
 vis
osity at ea
h step while advan
ing to more and

more realisti
 
luster properties.

3.1. Model Setup

In order to numeri
ally study the evolution and stability of buoyantly rising bubbles in the ICM,

we model an idealized, isothermal, relaxed galaxy 
luster 
ore. To investigate the e�e
ts of

Braginskii vis
osity, some limitations need to be established as a 
ompromise between a realisti


environment and a manageable setup where the underlying physi
s are more 
omprehensible.

This allows us to isolate the results of Braginskii-MHD in our simulations. Thereby, we follow

the 
luster setup by Reynolds et al. (2005) and Dong and Stone (2009). The ICM atmosphere is

given a density pro�le des
ribed by a beta-pro�le using β = 1/2 as its index,

ρ(r) = ρ0

[

1+

(

r

r0

)2
]

-

3

2
β

. (3.1)

Assuming that the ICM stays in hydrostati
 equilibrium, the gravitational potential of the dark

matter is �xed by ∇p = -ρ∇Φ. Further assuming spheri
al symmetry and using p = c2sρ (see

se
tion 2.1.3), we 
an rewrite equation (2.6) by plugging in the derivative of equation (3.1) to

yield

c2s
1

ρ

3ρ0
2r20r

[

1+

(

r

r0

)2
]

-

7

4

=
dΦ

dr
= -g,

3

2
c2s

r
∫

0

r′
(

r′2+r20
)dr′ =

r
∫

0

dΦ.

Finally, by performing the integral we get an expression for the gravitational potential for our


luster model (Reynolds et al., 2005)

Φ(r) =
3

4
c2s log

(

r′2 + r20
)

∣

∣

∣

∣

r

0

=
3

4
c2s log

[

1 +

(

r

r0

)2
]

. (3.2)

The gravitational for
es (dominated by dark matter) a
ting on ea
h grid 
ell in our ICs are �xed

by using this analyti
al potential throughout the simulations presented in table 3.3.

We 
hoose units of mass, length and velo
ity su
h that ρ0 = 1, r0 = 1 and v0 = 1 in the


ode. Our simulations have been run in a 
ubi
 box that spans a spatial domain of 6 r0 in
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ea
h dimension. The origin of the gravitational potential 
oin
ides with the 
enter of the box

at r/r0 =
√

x2 + y2 + z2 = 0. We 
onsider an ideal gas with adiabati
 equation of state with

γ = 5/3. The initially stati
 
luster atmosphere gets 
arved out by two underdense spheri
al

regions, symmetri
ally aligned along the verti
al y-axis. Su
h a bubble is displa
ed from the


enter of the dark matter potential by a distan
e R = 0.3 r0 with radius rbub = 0.25 r0 and

density ρbub = 0.01 ρ0. Hen
e, our ratio R/rbub = 1.2 is in good agreement with statisti
al data

from observations (Ra�erty et al., 2006). The bubble pro�le smoothly 
hanges from the redu
ed

values inside the bubbles to the quies
ent ambient gas for all number of 
ells N via an analyti
al

pro�le given by

ρi = ρbub +
1

2

(

1 + tanh

(

ri − rbub
a

))

(ρi − ρbub) ∀ i ∈ [0, N), (3.3)

where ri = ‖ri − rbub‖ is the distan
e of the i-th grid 
ell to the 
losest bubble 
enter, rbub =

‖rbub‖ is the bubble radius, a is a smoothing parameter and ρi is the density of the i-th 
ell.

Lo
al pressure equilibrium is maintained by setting the initial pressure of the bubbles to the

initial pressure of the ICM at that radius, meaning that the bubbles be
ome hotter than their

surroundings by a fa
tor of Tbub = 100Tamb. This results in an ICM with 
onstant internal

energy. The radially averaged pro�les for density, thermal pressure and temperature are plotted

in �gure 3.1.

Figure 3.1.: Radial pro�les of our ICs for a uniform magneti
 �eld at t/t0 = 0. Plotted from left to right are

the volume-weighted density ρ, the volume-weighted thermal pressure Pth and the mass-weighted

temperature T . The arti�
ially 
arved out low-density, hot bubbles are set in pressure equilibrium

and 
an be 
learly seen 
entered at r = ±0.3 r0.

The evolution of the bubbles is 
omputed by solving the equations of three-dimensional

Braginskii-MHD (see se
tion 2.3.5) using the moving-mesh 
ode AREPO (Springel, 2010), see

se
tion 2.4 for implementation details.

We are going to relate our 
ode units to quantities of real 
lusters in order to be able to assess

our �ndings with physi
al meaning and to make the following in analysis more quantitative.

Therefore, we adopt �du
ial values for length, mass and time following Dong and Stone (2009).

We �x the unit of length to r0 = 80kpc being equivalent to the 
ore radius, the unit of density

to a proton number density of ρ0 = 0.03mp cm
-3

and the unit of velo
ity to v0 = 800 km s-1

being equivalent to the isothermal sound speed. Having �xed these units already implies setting

the units of mass and time. Additionally, physi
al units allow us to derive general 
hara
teristi
s

of our 
luster model like the virial mass M200, virial radius r200, the sound 
rossing time tsc or

the thermal pressure s
ale height H. Those are presented in table 3.1. A 
ore radius of 80 kpc

was 
hosen as a 
ompromise between staying 
lose to the setup by Dong and Stone (2009) while

initializing the bubble radius to 20 kpc to be 
omparable with the jet-in�ated bubbles simulated

by Ehlert et al. (2018). Other studies with numeri
al simulations of buoyantly rising bubbles

based on an isothermal (double) beta pro�le use 
ore radii with i.e. 200 kpc (Brüggen and Kaiser,
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2001), 50 kpc (O'Neill and Jones, 2010) or 100 kpc (Gilkis and Soker, 2012).

The total mass of a 
luster within the virial radius 
an be 
al
ulated using the expression for

M(r) derived from hydrostati
 equilibrium in equation (2.7). There, the gradient in temperature

vanishes assuming an isothermal 
luster pro�le. Sin
e the gas density is well des
ribed by a β-

model, we 
an simply derive d ln ρg(r)/dr = −3βr/(r2+ r20) and plug in r = r200 to get the total

mass en
losed within the viral radius:

M(r200) =
3βkBTr200
Gµmp

(r200/r0)
2

1 + (r200/r0)
2 (3.4)

In se
tion 2.1.4 the virial radius r200 has been de�ned as the radius, within the mean gas density

equals 200 times the 
riti
al density of the universe, ergo M(r200)/V (r200) = 200× ρc, where ρc
is given by ρc = 3H2

0/8πG ≈ 1.88 × 10−29h2 g cm-3
. Here, H0 is the Hubble time and h is the

Hubble parameter. With this relation we 
an 
al
ulate r200 as

r200 =

√

200ρc
3βkBT

Gµmp

3

4π
− r20. (3.5)

The only term remaining unknown in equations (3.4) and (3.5) is the temperature, whi
h 
an

be expressed as kBT = v20µmp = 3.34 keV. The resulting quantities des
ribing a pseudo-realisti


galaxy 
luster are shown in table 3.1. They are in agreement with the properties whi
h have

been dis
ussed throughout 
hapter 2. The simulations presented in this thesis span a 
ubi
 box

with size (480 kpc)3 and the target mass of the 
ells of the ambient gas is about 6× 105 M⊙. For

our �du
ial run the numeri
al resolution of the 
ells inside the bubble region is about 0.5 kpc,

whi
h is about equal to the mean free path of the ions λmfp we estimated in equation (2.21). The

latter in turn is 
omparable to the vis
ous dissipation s
ale lvisc ∼ 1 kpc for a Reynolds number

of Re = 50 (see se
tion 2.3.3). Thus, we have established the following relation,

V
1/3
target,0 ∼ λmfp ∼ lvisc. (3.6)

r0 80 kpc
ρ0 0.03mp = 5× 10-26 g cm-3

v0 800 km s-1

t0 98Myr
domain spa
e (480 kpc)3 = (6 r0)

3

resolution number of 
ells

highest res 7× 107

�du
ial res 2× 107

lower res 7× 106

V
1/3
target,0 0.48 kpc = 6× 10-3 r0

mtarget,0 5.9 × 105 M⊙

kBT0 3.34 keV = 3.88 × 107 K
r200 1.5Mpc

M(< r200) 3.3× 1014 M⊙
H 107 kpc

g(r0) 2× 10-8 cm s-2

Table 3.1.: Fixing physi
al parameters that 
hara
terize

the ICM.

tsc(r200) 1.8Gyr
tsc(3 r0) 0.3Gyr
tbuoy 130Myr
tcool 1.8Gyr
ν0 ν‖ Re

0.01 1.98 × 1029 cm2 s-1 50

0.001 1.98 × 1028 cm2 s-1 500

Spitzer 4.6× 1028 cm2 s-1 420

β ‖B‖ kinj
106 0.1µG -

100 9.0µG 37.5-1 kpc-1

Table 3.2.: Fixing physi
al parameters that 
hara
terize

the ICM, 
ontinued.

We study two di�erent initial magneti
 �eld 
on�gurations, �rstly a uniform horizontal �eld

B = (B0, 0, 0) and se
ondly a turbulent �eld with 
onstant plasma beta. For ea
h �eld geometry
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we study two di�erent magneti
 �eld strengths, one with a weak �eld given by β = 106 and one

with a strong �eld given by β = 100. Calling the latter setup strong might be a bit misleading

sin
e the magneti
 pressure is still 100 times weaker than the thermal pressure, but it is 
onvenient

to do so in order to 
learly distinguish both. The plasma beta 
an be 
onverted into physi
al �eld

strength ‖B‖ in terms of Gauss using equation (2.25), whi
h are presented in table 3.2. Field

strengths ranging between 0.1− 9µG are representing reasonable 
luster properties (Carilli and

Taylor, 2002). For the turbulent magneti
 �eld an inje
tion s
ale is introdu
ed, kinj, su
h that

the 
oheren
e length is of order the bubble size, su
h that 2π/kinj ∼ L. This is quite important

sin
e whether the magneti
 �elds is able to stabilize a buoyantly rising bubble depends on the


oheren
e length of the �eld (Ruszkowski et al., 2007). They �nd that if the 
oheren
e length

is smaller than the bubble radius, no useful draping layer 
an form at the bubble front and the

bubble is getting dissolved by KHIs and RTIs.

Furthermore, we study two di�erent values for the anisotropi
 di�usion 
oe�
ient of Braginskii

vis
osity, whi
h are also shown in table 3.2. Following Dong and Stone (2009), the dynami


vis
osity is �xed as a di�usion 
onstant µ = ν0 (see se
tion 2.3.4) to give a Reynolds number

Re = v0r0ρ0/2ν0 = 50, where in 
ode units v0 = r0 = ρ0 = 1 su
h that ν0 = 0.01. Here, the


hara
teristi
 velo
ity is v0/2. Using the same value for ν0 allows for dire
t 
omparison later on.

The physi
al units of this di�usion 
onstant are then simply a
hieved by an unit 
onversion as

ν‖ = ν0(r
2
0/t0). For our �du
ial simulations we take ν0 = 0.01, whi
h yields ν‖ ≈ 2×1029 cm2 s-1.

It is insightful to 
ompare the Reynolds number of our isothermal setup to the Reynolds number

of a CC having the Spitzer value of vis
osity. The temperature dependent Spitzer value 
an be

derived from equation (2.30),

ν‖ =
2.2 × 10−15

ln Λ

(

T

T0

)5/2 ρ0
ρ

cm2s-1,

where we substitute

(

T

T0

)

=
mp

2

(p/p0)

(ρ/ρ0)
,

whi
h yields ν‖ ≈ 1.4 − 7.8× 1028 cm2 s-1 at the very 
luster 
enter (r/r0 = 0) and at the outer

radii (r/r0 = 3), respe
tively. From this we 
an estimate the Spitzer Reynolds number with

quantities in a

ordan
e with our presented setup at the 
luster 
ore:

Resp

(

r

r0
= 0

)

≈ 720

(

vL = v0/2

400 km/s

)(

L = r0
80 kpc

)

( n0

0.03 cm-3

)

(

T0

3.88 × 107 K

)

-5/2

(3.7)

Looking at radii further out with lower density, the 
luster atmosphere be
omes less turbulent

and the Reynolds number de
reases a

ordingly down to Resp(r/r0 = 3) ≈ 130, whi
h implies a

naive mean Reynolds number of Resp ≈ 420. Our estimated range of Reynolds numbers inferred

from Spitzer vis
osity is not in good agreement with estimates of Reynolds et al. (2005); Dong

and Stone (2009) modelling the hot bubble gas for the Perseus 
luster 
ore region,

Re ≈ 62

(

vL
390 km/s

)(

L

20 kpc

)

( n

0.03 cm-3

)

(

T

5.81 × 107 K

)

-5/2

, (3.8)

neither with estimates of Rosin et al. (2011) modelling the plasma in the 
ore of Hydra A,

Re ≈ 60

(

vL
250 km/s

)(

L

6.5 kpc

)(

vth
700 km/s

)

-1( λmfp

0.04 kpc

)

-1

, (3.9)
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nor with the estimate we derived based on re
ent observational data from Hitomi in equation

(2.32). However, the Reynolds number varies 
onsiderably i.e. with the 
hoosen length s
ale

and therefore with the set of �xed units. So for instan
e, if we would just double the initial

temperature, we would get a new mean Spitzer Reynolds number of Resp ≈ 75 a

ording to

equation (3.7), whi
h is already in good agreement with the above estimates of other studies.

We study the results of a set of simulations listed in table 3.3. The �du
ial run is highlighted in

boldfa
e, whi
h runs a model using a uniform horizontal magneti
 �eld throughout the domain,

initially with a very weak magneti
 �eld strength of β = 106 and in turn a reasonable strong

(
ompared to the Spitzer value) anisotropi
 vis
osity 
oe�
ient of ν0 = 10-2, whi
h results in an

ICM about 8 times as vis
ous as the mean Spitzer value. We have also run a similar simulation

with the same magneti
 �eld 
on�guration, but with a ten times smaller vis
osity 
oe�
ient,

ν0 = 10-3, yielding an ICM whi
h is about ∼ 80% as vis
ous as the mean Spitzer value.

Label B-�eld β ν0 Re
hydro ... ... ... ...

xB6mhd Horizontal 1e6 ... ...

xB2mhd Horizontal 100 ... ...

tB2mhd Turbulent 100 ... ...

xB6N2 Horizontal 1e6 1e-2 50

xB6N3 Horizontal 1e6 1e-3 500

xB6N2lim Horizontal 1e6 1e-2 lim 50

xB6N2iso Horizontal 1e6 Iso 1e-2 50

xB6N3iso Horizontal 1e6 Iso 1e-3 500

xB2N2 Horizontal 100 1e-2 50

xB2N2lim Horizontal 100 1e-2 lim 50

xB2N2iso Horizontal 100 Iso 1e-2 50

tB2N2 Turbulent 100 1e-2 50

tB2N3 Turbulent 100 1e-3 500

tB2N2lim Turbulent 100 1e-2 lim 50

tB2N2iso Turbulent 100 Iso 1e-2 50

Table 3.3.: Parameter study of the simulations presented in this thesis. The �rst letter of ea
h label indi
ates the

magneti
 �eld geometry: uniformly, horizontally aligned (x) or turbulent (t). The se
ond letter refers

to the magneti
 �eld strength: weak, β = 106 (B6) or strong, β = 102 (B2). The third letter refers to

the vis
osity 
oe�
ient: strong, ν0 = 10-2 (N2) or weak, ν0 = 10-3 (N3). The last syllable indi
ates

whether the Braginskii vis
osity is limited (lim) or isotropi
 (iso).

3.1.1. Magneti
 Field Con�guration

The �rst magneti
 �eld 
on�guration simply 
ontains a �eld horizontally aligned (x-dire
tion)

throughout the domain (within both the bubbles and the atmosphere), whi
h sets �eld lines

initially perpendi
ular to the (y-)dire
tion of the rising bubbles. It is expe
ted that this setup

shows a more 
oherent bubble morphology over time if anisotropi
 vis
osity is in
luded. This is

expe
ted be
ause Braginskii vis
osity suppresses RTI and KHI along the �eld lines, thus having

Braginskii-MHD should show less instability at the bubble surfa
e in the x-y plane, parallel

to the �eld. For the strong �eld simulations the magneti
 �eld strength s
ales with density as

B(r) = B(0)(ρ(r)/ρ(0))1/2 as studies suggest (see se
tion 2.3.3). This means that the ratio of

gas to magneti
 pressures, β = 8πPth/B
2
, is kept 
onstant with height away from the 
luster


enter. Hen
e, the ambient magneti
 �eld strength generally de
reases outwards in the ICM.

The se
ond magneti
 �eld 
on�guration aims for a more realisti
 approa
h in modelling the

ICM. Here, we generate a Gaussian-distributed, turbulent magneti
 �eld in a

ordan
e with the

pro
edure used in Ehlert et al. (2018). We will only des
ribe its most important aspe
ts in this

thesis. For further details, we refer to the Appendi
es of Ehlert et al. (2018) and Ruszkowski
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et al. (2007). The initial magneti
 �eld B is Fourier transformed based on a Cartesian mesh,

while meeting some fundamental 
onstrains. B must be divergen
e-free, su
h that ∇ ·B = 0.

Ea
h of the three �eld 
omponents Bi independently follows a one-dimensional power spe
trum

PBi(k) of the form

PBi(k) ∝
{

k2, k < k
inj

k−5/3, k
inj

≤ k
(3.10)

where the power spe
trum is de�ned by PBi(k) ∝ k2‖B̃i(k)‖2 with the Fourier transform of

ea
h �eld 
omponent B̃i(k). So, B follows a random white noise power spe
trum on the largest

s
ales for wave numbers smaller than the inje
tion s
ale and a Kolmogorov spe
trum in the

inertial range for k ≥ kinj. The average �eld strength is zero (〈B〉 = 0). In order to maintain a


onstant magneti
-to-thermal pressure ratio, B2
is s
aled at ea
h radius a

ordingly. The result

is plotted in the left panel of �gure 3.2. The power spe
trum governs the entire 
omputational

domain, meaning that also the bubbles 
ontains tangled magneti
 �eld lines instead of a more

realisti
 toroidal 
on�guration. However, the bubble region is magneti
ally isolated, whi
h 
an

be seen in the right panel of �gure 3.2. After 
reating the turbulent magneti
 �eld, the Cartesian

�eld 
omponents are then interpolated onto the adaptive Voronoi mesh of our initial 
onditions.

Therefore, all 
ell sizes of the Cartesian mesh need to be smaller than the smallest 
ell size of

our IC at any point. Sin
e the spatial domain is quite large, it is not 
omputationally feasible

to maintain the highest resolution of the smallest 
ell for the entire simulation box. Hen
e, it

be
omes ne
essary to 
ombine multiple (in our 
ase two) nested meshes with adaptive mesh

resolution in order to be able to perform the individual Fourier transformations.

To ensure pressure equilibrium, the temperature is res
aled adopting temperature �u
tuations

of the form nkBδT = −δB2/8π. The new IC is then relaxed using Lloyd's algorithm (see se
tion

3.2.1). In fa
t, relaxing the IC damps some remaining magneti
 divergen
es, but at the same time

leads to a redu
tion of the amplitude of the magneti
 �eld. Although we set the initial velo
ities

to zero, a small random velo
ity �eld will be generated soon after the simulation starts due to

the Lorentz for
e of the tangled magneti
 �eld (Yang and Reynolds, 2016b). These indu
ed

turbulent gas motions should gradually dissipate over time, thereby de
aying magneti
 power.

Hen
e, the temperature and B2
of our IC are res
aled again to the desired magneti
-to-thermal

pressure ratio β-1
. We show the �nal radial pro�les of the turbulent 
on�guration in �gure 3.3.

The small bump at r/r0 = 1.8 o

urs be
ause there is the transition area from the �rst mesh to

the se
ond 
oarser nested mesh.

3.2. Initial Conditions

3.2.1. Mesh Relaxation

We relax the meshes of our ICs by using Lloyd's method (Lloyd, 1982) implemented in AREPO.

The algorithm iteratively 
onstru
ts a 
entroidal Voronoi tessellation starting from our Cartesian-

like tessellation. This is a
hieved by moving the mesh-generating points to the 
enter-of-masses of

their 
ells until both 
oin
ide after re
onstru
ting the Voronoi tessellation. After some iterations

the initial 
ubi
 
ells are relaxed towards a honey
omb-like 
on�guration, while remaining the

same mass density pro�le, whi
h is shown in �gure 3.4. This mesh regularization has been

applied as it 
reates a non-degenerate tessellation, whi
h is 
omputationally more e�
ient in

AREPO and it smoothes some of the remaining magneti
 divergen
es. Having 
ells where the


enter-of-mass stays 
lose to the mesh-generating point minimizes numeri
al errors and limits

the rate at whi
h mesh fa
es turn their orientation during mesh motion (Springel, 2010). Hen
e,

an unrelaxed mesh would slow down the numeri
al 
omputation signi�
antly.
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Figure 3.2.: Proje
ted sli
es of the x-y midplane for our model tB2N2 at t/t0 = 0 with mean magneti
 �eld

strength ‖B‖ = 0.5B0. Left : The initial x-
omponent of the turbulent magneti
 �eld in units of

B0 = 18µG for β = 100 . The panel spans a spatial domain 
orresponding to dimensions x ∈ [±3 r0]
and y ∈ [±3 r0] Right : Radial 
omponent of the turbulent magneti
 �eld, ‖Br‖ = r ·B/‖r‖ in units

of B0, where the radial origin lies at the 
enter of the upper bubble and the magneti
 isolation of

the bubble region is 
learly visible. The panel spans a spatial domain 
orresponding to dimensions

x ∈ [±1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width dr = 0.066 r0 
entered

at z = 0.

Figure 3.3.: Mass-weighted radial pro�les of the initial turbulent magneti
 �eld after res
aling and relaxing the

mesh but before setting the bubbles. Left : On average 
onstant magneti
-to-thermal pressure ratio

β-1
throughout the 
luster. Middle: Amplitude of the magneti
 �eld ‖B‖ in units of B0 = 18µG

with dependen
e on density su
h that B ∝ ρ1/2. Right : On average 
onstant internal energy (ergo

isothermal temperature) throughout the 
luster.

Figure 3.4.: Highly zoomed-in sli
es of the 
luster 
ore with 
olor-
oded density in units of ρ0. Left : The initial
non-relaxed grid at t/t0 = 0 
onsists of nearly perfe
t 
ubi
 
ells, whose perpendi
ular edges would be

numeri
ally 
hallenging in AREPO. Right : After applying the Lloyd's algorithm for some time (t/t0 =
0.1), the relaxed mesh looks mu
h more optimized while its Voronoi 
ells try to retain a honey
omb-

like shape. Both sli
es span a spatial domain 
orresponding to dimensions x ∈ [-0.1 r0, 0.1 r0] and
y ∈ [-0.1 r0, 0.1 r0].
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3.2.2. Passive S
alars and Re�nement Criteria

In order to be able to identify the bubble during its evolution, a passive s
alar, Xbub, is used. It

tra
es the �uid motions by re
ording the mass fra
tion of the bubble material in ea
h Voronoi 
ell.

Xbub is initially set to one witihin the bubble region and zero everywhere else in the simulation

domain su
h that Xamb = 1 − Xbub. The transition layer between bubble and ambient gas is

given a smoothly varying analyti
al pro�le for all number of grid 
ells N ,

Xbub,i =
1

2

(

1 + tanh

(

−ri − rbub
a

))

∀ i ∈ [0, N ], (3.11)

where ri = ‖ri − rbub‖ is the distan
e of the i-th grid 
ell to the 
losest bubble 
enter, rbub =

‖rbub‖ is the bubble radius and a is a smoothing parameter. We have tested several values

for a of otherwise un
hanged simulations and 
ould infer that our ICs are quite sensitive to

this parameter (see �gure A.1 in the appendix). It kind of determines how well the density

gradients at the bubble surfa
e are resolved. From this small parameter study we 
on
lude

that a = 0.1 rbub has yielded the best results in terms of Xbub mixing. As the bubble evolves,

subsequent adve
tion and mixing ensure that 
ells in�uen
ed by the rising bubble 
an then have

fra
tions of the initial passive s
alar values. We treat a Voronoi 
ell as bubble material if the

tra
er mass fra
tion ex
eeds a 
ertain threshold, Xbub > 10-3, whi
h is plotted in the left panel

of �gure 3.5. Throughout this thesis, we refer to a mass fra
tion of passive s
alars and passive

tra
ers inter
hangeably.

Figure 3.5.: Sli
es of the x-y midplane showing the evolved state of the buoyantly rising bubbles at t/t0 = 4 for the
hydrodynami
al setup of our highest resolution. Both the passive s
alars (left) and the volume of the

grid 
ells (right) are illustrating that the analysis of the bubbles 
an be ni
ely tra
ed while minimizing

the 
omputational 
osts by only using higher resolution where it is most needed numeri
ally. Both

sli
es span a spatial domain 
orresponding to dimensions x ∈ [-3 r0, 3 r0] and y ∈ [-3 r0, 3 r0].

Di�erent re�nement 
riteria for the mesh are used to ensure we resolve the relevant bubble

physi
s on the one hand and to make the 
omputation mu
h more e�
ient on the other hand. In

the default 
ase, the mass of ea
h 
ell is maintained at a 
ertain spe
i�ed target mass mtarget,0

(Vogelsberger et al., 2012). If a 
ell be
omes a fa
tor of two less massive than this threshold, this


ell will be dere�ned (and vi
e versa). We use the standard 
riterion in 
ells belonging to the

ambient gas. This 
reates large Voronoi 
ells at the 
luster outskirts, where the density de
reases


onsiderably, whi
h minimizes the 
omputational 
ost. However, we do not want to have the

same re�nement 
riterion for the low-density bubble 
ells. Here, the default re�nement would

result in very poorly resolved bubble dynami
s. Therefore, we use a volume-based re�nement


riterion for grid 
ells, whose tra
er mass fra
tion satis�es Xbub > 10-3, whi
h is plotted in the
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right panel of �gure 3.5. If a 
ell's volume ex
eeds two times a �xed target volume Vtarget,0,

this 
ell gets re�ned. Due to the high density 
ontrast (ρbub/ρamb∼10
-2
), the boundary layer

between bubble and ambient 
ells needs a third re�nement 
riterion, whi
h is based on the

steepness of the density gradient ‖∇ρ‖ as V
1/3
i ‖∇ρ‖ > 0.5ρi. The latter two 
riteria repla
e the

default re�nement 
riterion whenever appli
able (see Weinberger et al. (2017) for details). To

prevent runaway re�nement, a minimum 
ell volume Vmin is used to restri
t ea
h 
ell's volume

to Vmin = Vtarget,0/2. The values of mtarget,0 and Vtarget,0 are summarized in table 3.1 for our

simulations with �du
ial resolution.

3.2.3. Boundary Conditions

Instead of simple periodi
 or re�e
tive boundary 
onditions, we use in-/out�ow boundaries at

radii r/r0 & 3. In AREPO, these spe
ial boundary 
onditions requires using two types of

boundary 
ells: �uid and solid. The solid boundary 
ells are implemented into the Voronoi mesh

of the spatial domain as a thin spheri
al shell with width dr at radii 3r0−dr/2 < r < 3r0+dr/2.

The �uid 
ells are built up of boundary 
ells at radii greater than those of the solid boundary

layer. Throughout this thesis, we will refer to grid 
ells belonging to the spatial domain if they

are having radii smaller than r/r0 < 3 for simpli
ity. We have 
hosen this type of boundary


onditions in order to better maintain hydrostati
 equilibrium, whi
h we have had trouble with

establishing otherwise (see also se
tion 4.5). Furthermore, using in-/out�ow boundaries has the

advantage that the �uid state of the �uxes is not simply mirrored at the boundary interfa
e but

repla
ed with a prede�ned state des
ribing the in-/out�ow 
onditions (Weinberger et al., 2020).

At the solid state, i.e. the vertex velo
ities are set to zero to guarantee a �xed layer of 
ells. Both

states ensure that on the one hand no de-/re�nement 
riterion will be 
he
ked and on the other

hand no physi
al �uxes will be 
al
ulated for these 
ells. The number of 
ells belonging to our

boundary region 
onstitute for ≈ 27% of the total number of 
ells of the entire 
ubi
 box. This

makes our ICs numeri
ally mu
h more e�
ient sin
e splitting and merging of 
ells in a Voronoi

mesh is 
omputationally quite 
ostly and we avoid unne
essary 
omputational time on solving

�uxes for 
ells, whi
h have no physi
al relevan
e.
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Chapter 4.

Analysis

In this 
hapter we analyse the simulations of our models summarized in table 3.3. We start

with our �du
ial run xB6N2, where we present its bubble evolution in detail by analysing the

global morphology in terms of emerging RTI and KHI in se
tion 4.1. Additionally, we dis
uss

its energy 
ontents, the mixing e�
ien
y and how 
omparable the 
ooling and heating rates are.

Next, we pro
eed by showing the results of the other simulations we have run. Basi
ally after

dis
ussing variations of spe
ial interest for the model having uniform magneti
 �eld lines and a

very high plasma beta in se
tion 4.2, we move on to the next 
ase where we keep the uniform

alignment but in
rease the magneti
 pressure to satisfy β = 100. This 
orresponds to analysing

run xB2N2 in se
tion 4.3. Afterwards, we present model tB2N2 in se
tion 4.4, where β = 100

is kept but now a turbulent magneti
 �eld is introdu
ed. In the last se
tion 4.5, we perform a


ouple of sanity 
he
ks and a 
onvergen
e test in order to verify numeri
al reliability.

4.1. Bubble Evolution

The general evolution of the rising bubble is des
ribed in this se
tion for the �du
ial run xB6N2


omprising a very weak magneti
 �eld with β = 106, horizontally aligned �eld lines, and a relati-

vely high vis
osity 
oe�
ient with ν = 10-2 without limiting the anisotropi
 pressure. The �gure

4.1 shows, from left to right, the tra
er mass fra
tion Xbub, the density ρ, the velo
ity in units

of the sound speed cs, the kineti
-to-thermal pressure ratio Xkin = Pkin/Pth and the magneti
-

to-thermal pressure ratio β-1 = PB/Pth. As pointed out in se
tion 2.3.2, the 
luster atmosphere

is stable against 
onve
tion a

ording to the S
hwarzs
hild 
riterion, but introdu
ing an under-

dense bubble 
lose to the 
enter of the gravitational potential will not keep the system stati
 as

the bubble represents a high entropy 
on
entration with dS/dr < 0 at these radii. Furthermore,

the S
hwarzs
hild 
riterion only applies to small disturban
es of a given equilibrium, whi
h is not

the 
ase for an underdense bubble of several kiloparse
s in size. So instead, a simpler argument


an be given 
onsidering the buoyan
y for
e ‖Fbuoy‖ = −gVbub(ρamb − ρbub). Sin
e we have

ρamb > ρbub the buoyan
y for
e is stronger than the gravitational for
e ‖Fgrav‖ = gVbubρbub and

the bubble starts rising buoyantly upwards the 
luster potential and ambient gas starts strea-

ming inwards to �ll its wake. Thereby, the bubble will adiabati
ally expand to maintain pressure

equilibrium with its surroundings. The shear of velo
ity �ow, whi
h is the velo
ity di�eren
e

between bubble and ambient ICM, indu
es the KHI along the edges of the bubble sin
e the rise

velo
ity is subsoni
, v/v0 < 1. The motions via KHI are evident in qui
kly forming vorti
es.

In addition, at the top of the bubble the RTI emerges by tearing the bubble front apart. Both

instabilities 
an already be noti
ed at t/t0 = 4, whi
h later on highly distort the bubble interfa
e.

Those lead to turbulent mixing of the bubble material with the surrounding 
luster gas until all

of it will be di�used into the ICM. The perturbations indu
ed by instabilities grow exponentially

with time su
h that the amplitude A ∝ exp(t/τ). The time-s
ales for hydrodynami
al RTI and

KHI, τRT and τKH respe
tively, are given by Chandrasekhar (1981) or by taking the inverse of it
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growth rates, e.g. from equation (4.15) for the KHI:

τKH =
ρbub + ρamb

2
√
ρbubρamb

1

∆vk

τRT =

∣

∣

∣

∣

ρbub + ρamb

ρbub − ρamb

1

gk

∣

∣

∣

∣

0.5 (4.1)

where ρamb is the density of the ambient gas, ρbub is the density of the bubble, ∆v is the

di�eren
e of the shearing velo
ities at the interfa
e, g is the gravitational a

eleration and k is

the wavenumber of the perturbed length s
ale. The bubble is expe
ted to survive until . τ and

starting to dissolve after that. ∆v is su�
iently 
lose to the terminal upward velo
ity vt, whi
h

we derived in se
tion 2.2.3 by balan
ing the drag for
e with the buoyant for
e. O'Neill et al.

(2009) show that equation (2.18) 
an be written to su�
ient a

ura
y as vt ≈ cs,0
√

rbub/H ,

where cs,0 is the sound speed at the 
luster 
enter, rbub is the bubble radius and H is the s
ale

height. They also study the evolution of buoyant bubbles in a three-dimensional MHD simulation

with arti�
ial bubbles. Applying the initial bubble 
onditions from O'Neill et al. (2009) into

their simpli�ed expression for the terminal velo
ity yields vt ≈ 0.4 cs. Using the relevant values

presented in this work (see se
tion 3.1) gives vt ≈ 0.44 cs ≈ ∆v. If we plug-in typi
al values

for our �du
ial simulation into equation (4.1), su
h that ρbub/ρamb ≈ 10-2, ∆v ≈ 0.44 cs and

g ≈ 3 × 10-3 kpcMyr-2, we get the following time-s
ales a
ting on length s
ales 
omparable to

the bubble size:

τKH ≈ 280 (k 20 kpc)−1 Myr

τRT ≈ 77 (k 20 kpc)−0.5 Myr
(4.2)

Based on the time-s
ales the RTI should evolve

∼3.5 times faster than the KHI. If we are

interested in wavelengths of perturbations 
lose to the size of the bubble, i.e. the KHI should

emerge after

∼300Myr ≈ 3t/t0. By looking at our hydrodynami
al runs in �gure 4.24 (at the

end of this 
hapter) we �nd that this is approximately the 
ase as the bubbles are already

disrupted into two relatively symmetri
al eddies at t/t0 = 4. In fa
t, the RTI indu
es 
ir
ulatory

motions within the bubbles, whi
h then get further mixed by se
ondary KHI along the 
onta
t

dis
ontinuity. The bubbles show a high level of vorti
ity and transform into a torus-like stru
ture.

This is in a

ordan
e with previous �ndings of simulations with an unmagnetized and invis
id


luster model (Reynolds et al., 2005; Gardini, 2007). The distorted bubbles do not resemble the

morphology of X-ray and radio observations of (ghost) 
avities and our hydrodynami
al model


an therefore be ex
luded from further dis
ussion. However, generally e.g. 
hanging the density


ontrast or the way the bubble is in�ated 
an substantially alter the out
ome of hydrodynami
al

simulations. That the �du
ial run xB6N2 shows suppressed instabilities in dire
t 
omparison is

related to the e�e
ts of vis
osity on the buoyant evolution sin
e stresses from the magneti
 �eld


an be negle
ted. For instan
e, there are no profound, fully formed vorti
es visible at t/t0 = 4 as

in the hydrodynami
al 
ase, but the bubble is still shredded in a 
omplex manner, although with

mu
h less vorti
ity in its wake. Therefore if the instabilities are not suppressed, the disruption

of the bubble o

urs mu
h earlier as the vortex �ows disturb the 
entral bubble region and push

material to either side of it as the bubble is moving upwards the 
luster atmosphere. However,

the anisotropi
 vis
osity suppresses instabilities only in the dire
tion parallel to the magneti
 �eld

lines (Dong and Stone, 2009; Suzuki et al., 2013; Berlok et al., 2019). Hen
e, we also examine the

e�e
ts on morphology in the y-z plane perpendi
ular to the �eld presented in �gure 4.2. Here,

the bubble remains less 
oherent as in the x-y plane and gets shredded into distin
t pie
es. This

results in stronger mixing at later times, where small s
ale stru
tures develop. After a 
ertain

time the bubble is not able to 
on�ne itself any longer as there is not any surfa
e tension ex
ept
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for the very weak magneti
 �eld. The bubble splits into two, while parallel to the �eld the

bubble stays more inta
t. These are 
lear indi
ations of anisotropi
 suppression of RTI and KHI.

Note that it is ambiguous to de�ne a disruption time of the bubble, whi
h 
ould for instan
e

just depend on the 
oheren
e of the bubble front or on the maximum energy deposition into the

ICM.

The �uid motions are tra
ked by the velo
ity ve
tor �eld in the middle 
olumns in �gure

4.1. At early times the streamlines visualize how the initially stati
 
luster gas starts to �ow

inwards along the edges of the bubble towards its wake. At later times, t/t0 = 8, the streamlines

signal a more turbulent �ow, showing that the uplifted gas is being disintegrating into the ICM.

Looking at both of the outer 
olumns, where the magneti
 ve
tor �eld is plotted, we see that the

initially uniform magneti
 �eld lines get bended and dragged along with the rising bubble. As

des
ribed in se
tion 2.3.2, the �uid is 
oupled to the magneti
 �eld lines, whi
h are adve
ted with

the gas �ow. Although the magneti
 �eld is very weak with β = 106, it gets lo
ally ampli�ed

(damped) where the �eld lines are getting 
ompressed (stret
hed). This is shown in the last


olumn in �gure 4.1, where the inverse β is plotted. After some time, the magneti
 �eld strength

is being ampli�ed by three orders of magnitude espe
ially at the wake, tra
ing the rising bubble

upward the gravitational potential. Here the �eld lines get stret
hed the most, thus having the

highest magneti
 tension for
es. In addition, we see bending of �eld lines at the bubble front via

magneti
 draping (Dursi and Pfrommer, 2008). But sin
e the magneti
 �eld is so weak, draping

e�e
ts are not strong enough to stabilize the bubble and suppress RTI. The fourth 
olumn shows

the kineti
-to-thermal pressure ratio, whi
h is of order unity in the quies
ent 
luster atmosphere

and heavily enhan
ed for the bubble material, meaning that the bubble dynami
s are kineti
ally

driven. The blue shell at the top of the panels looks like a sho
k front, but it is a
tually just the

boundary layer of our IC, whi
h remains at the same lo
ation throughout the simulation (see

se
tion 3.2.3). The same quantities are plotted in �gure 4.2 for the proje
ted y-z midplane. At

a �rst glan
e, they show basi
ally the same pi
ture besides the de
omposing morphology of the

faster disrupted bubble. If we look for instan
e more 
arefully at t/t0 = 2 for Xbub and ρ, we


an infer that the bubble sli
es perpendi
ular to the uniformly magnetized ICM already show

signs of KHI starting to take pla
e, whereas the parallel bubble sli
e at t/t0 = 2 in �gure 4.1

looks very symmetri
, only modi�ed by ram pressure. So Braginskii vis
osity does suppress the

growth rates of KHIs, but not enough to prevent these ma
ro-s
ale instabilities from emerging.

One detail is also worth mentioning. The trail the rising bubble left behind in its wake is no

longer bipolar due to the gas moving with the magneti
 �eld and is probably not a proje
tion

e�e
t.
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Figure 4.1.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines showing the

tra
er mass fra
tion Xbub, the density ρ, the velo
ity in units of the sound speed cs, the kineti
-to-
thermal pressure ratio Xkin = Pkin/Pth and the magneti
-to-thermal pressure ratio β-1 = PB/Pth

for our �du
ial run xB6N2. Ea
h panel spans a spatial domain 
orresponding to dimensions x ∈
[-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width dr = 0.066 r0 
entered
at z = 0. For the tra
er mass fra
tion and the magneti
-to-thermal pressure ratio, the streamlines

show the magneti
 ve
tor �eld. For the other three quantities the streamlines show the velo
ity ve
tor

�eld. Ea
h ve
tor �eld is presented as a thin proje
tion as well. The 
olor-
oding is logarithmi
ally

s
aled where the 
olorbar ti
ks are labeled in power of tens and linear otherwise. The 
olorbar is

�xed for the di�erent times shown.
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Figure 4.2.: Same quantities as in �gure 4.1, but now showing proje
ted sli
es of the y-z midplane perpendi
ular

to the initially uniform magneti
 �eld lines. Ea
h panel spans a spatial domain 
orresponding to

dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in x-dire
tion have width

dr = 0.066 r0 
entered at x = 0.

4.1.1. Energy Content

The evolution of the energy 
omponents for our �du
ial run are shown in �gure 4.3, where we

plot ea
h mean energy density as its ratio to the total energy density, ǫtot = ǫkin+ǫth+ǫB, whi
h

is ex
luding ǫg in order to see the ratios in more detail as the amount of gravitational energy is


lose the total energy. The gravitational energy is thus plotted separately in the fourth 
olumn

as the di�eren
e to its initial value ∆ǫg = ǫg(t) − ǫg(0). We refer to an energy 
omponent as

an energy by taking Ekin =
∫

V ρv2dV/2 for the kineti
 energy, Eth =
∫

V ρu dV for the thermal

energy, EB =
∫

V B2dV/8π for the magneti
 energy and Eg =
∫

V Φρ dV for the gravitational

potential energy. To get the mean energy densities we divide those energy terms by the total

volume V =
∫

V dV = 36π r30.

As previously dis
ussed the magneti
 energy gets enhan
ed at the rim of the bubble but is still

negligibly small 
ompared to the other energy terms. Hen
e, the magneti
 �eld is energeti
ally

subdominant in the bulk of the ICM, espe
ially sin
e β = 106. The gravitational energy is

subtra
ted by the ba
kground potential energy. It 
an be seen that the bubble front is buoyantly

rising upwards the 
luster potential, while the bubble interior is not experien
ing a gravitational

net for
e. With time the bubble adiabati
ally expands and mixes with the ambient ICM. This

is slowing down the terminal speed of the lobe due to loss of momentum to the ambient gas and
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due to loss of buoyan
y for
e be
ause of the in
reased density. The thermal and kineti
 energy

ratios look quite similar, although being inverse to ea
h other. The kineti
 fra
tion just provides

up to about 12% of the total energy, while 
ontribution of thermal energy never falls below

88%. The kineti
 energy 
ontribution de
reases with time throughout the bubble material. We

expe
t the kineti
 energy being 
onverted into thermal energy on time-s
ales that are resolved

by our simulation. This 
an not be 
learly inferred by looking at the panels in �gure 4.3, but

is be
oming more evident by 
omparing the left and right sub�gures of 4.4 though. For the

former, we plot the energies volume averaged over the entire spatial domain as a fun
tion of

time. We do the same for the latter, but restri
t the energy averages to Voronoi 
ells identi�ed

as bubble material. A 
ell is 
lassi�ed as a bubble 
ell if the tra
er mass fra
tion ex
eeds a


ertain threshold: Xbub > 10-3. We 
an see that after t/t0 ≈ 2 the bubble starts loosing kineti


energy 
ontinuously while the thermal energy in
reases. This is an indi
ation for heating, whi
h

will be dis
ussed later on in se
tion 4.1.3. However, the 
onversion only appears in the bubble

itself sin
e the bulk of the ICM stays relatively una�e
ted from a energeti
 point of view (see

�gure 4.4).

Figure 4.3.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines for our

�du
ial run xB6N2 showing from left to right the magneti
 energy density, thermal energy density

and kineti
 energy density normalised to the total energy density, whereas the latter is ex
luding the

gravitational energy density 
omponent, whi
h is shown in the fourth 
olumn as the di�eren
e to its

initial value ∆ǫg = ǫg(t) − ǫg(0). Ea
h panel spans a spatial domain 
orresponding to dimensions

x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width dr = 0.066 r0

entered at z = 0.



51 Chapter 4. Analysis

(a) Left : Evolution of total energy Etot and its energy


omponents volume-averaged over time 
overing the

entire spatial domain within r/r0 < 3. Right :

Relative energy 
hanges at ea
h time t su
h that

∆E(t) = E(t)−E(0) is the energy 
omponent sub-

tra
ted by its initial value.

(b) Same as in the left sub�gure, now limited to the bub-

ble region, where the latter is de�ned as the number

of 
ells ex
eeding Xbub > 10-3.

Figure 4.4.

4.1.2. Mixing

As dis
ussed in a previous se
tion, a buoyantly rising bubble is going to get distorted and

eventually mixed with the quies
ent ambient gas sooner or later depending on the level of vis
osity

or the strength of the magneti
 �eld. One way to quantify the fra
tion of mixed gas is to 
ompute

the volume 
overing fra
tion, whi
h we will show in �gure 4.25 for the 
onvergen
e study in

se
tion 4.5. Another way to estimate mixing is to 
ompute the gas 
lumping fa
tor Cρ, whi
h is

a measurement of how density varies within a gaseous medium. The peaks of a 
lumping fa
tor

distribution represent gas 
lumps and 
an be interpreted as perturbations from the smooth gas

density pro�le. The gas 
lumping fa
tor is de�ned by averaging the 
luster density pro�le within

radial shells of 
onstant width from the 
luster 
enter (Vazza et al., 2013):

Cρ(r) =

∫

Ω ρ2(r)dΩ
(∫

Ω ρ(r)dΩ
)2 =

〈

ρ2
〉

Ω

〈ρ〉2Ω
≥ 1, (4.3)

where Ω is the solid angle of a sphere. A homogeneous ICM with a smooth gas density distribution

is 
onsidered to be not 
lumpy (Cρ = 1). However, X-ray analyses of galaxy 
lusters show that

the gas density inferred from the X-ray surfa
e brightness is overestimated by

∼
√

Cρ if the ICM

is 
lumpy. We note that averaging within spheri
al shells in our model setup might not be

a good approximation sin
e introdu
ing bubbles in a homogeneous ICM breaks the spheri
al

symmetry in the 
luster. As Vazza et al. (2013) point out, a high gas 
lumping fa
tor does

not ne
essarily imply an in
reased presen
e of dense gas 
lumps, espe
ially sin
e we are not

investigating distributed gas 
lumps whi
h have formed due to a

retion or mergers. However,

we 
an rewrite equation (4.3) as a measure of the density variation of the ICM su
h that Cρ is

related to the varian
e and mean of the density as

Cρ =

〈

ρ2
〉

〈ρ〉2
=

〈

ρ2
〉

− 〈ρ〉2

〈ρ〉2
+ 1 =

〈

(ρ− 〈ρ〉)2
〉

〈ρ〉2
+ 1 =

Var(ρ)

E(ρ)2
+ 1, (4.4)
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where we omit Ω for brevity. The mass-weighted gas 
lumping fa
tor is shown on the left in

�gure 4.5. We plot Cρ of the entire 
luster for our �du
ial run xB6N2 at several times and


ompare it with the hydrodynami
 simulation. Based on the peaks, we 
an infer until whi
h

radius the bubble has risen at ea
h time given. The width of ea
h distribution indi
ates how

spread the bubble has be
ome. We see that the bubble of the Braginskii run slows down due to

anisotropi
 vis
osity and only rea
hes out to r/r0 ≈ 2.5 with its bubble front at time t/t0 = 8

while most of the bubble gas lies at r/r0 ≈ 1.8. In the hydrodynami
al 
ase, the bulk of the

bubble material rea
hes out to r/r0 ≈ 2.5 after the same time. Overall, Cρ stays 
lose to one

at all times. The amplitudes of both samples peak roughly at the same 
lumping fa
tors at

ea
h time, shifted to larger radii for hydro. We expe
ted a slightly di�erent result with xB6N2

having higher 
lumpiness throughout the simulation, be
ause Braginskii vis
osity should damp

some �uid motions from being mixed with the quies
ent ICM. Instead, the left panel of �gure

4.5 suggests that our vis
osity driven run displays approximately the same amount of mixing

as the invis
id 
ontrol run. Visual 
omparison of �gures 4.24 and 4.1 however indi
ate that

there is less mixing in the Braginskii run than in the hydrodynami
al run. Hen
e, using the gas


lumping fa
tor to assess the amount of mixing for an unstable rising bubble might not be very

reliable and we will not 
ontinue with a deeper analysis. That the �nal 
lumpiness does not

di�er mu
h is probably related to the anisotropi
 suppression of instabilities as the bubble rises.

We have already des
ribed that the bubble is less 
oherent in the y-z plane perpendi
ular to the

magneti
 �eld for our �du
ial run (see �gure 4.2). That is possibly why our overall pi
ture of


lumpiness is relatively vague to interpret, be
ause the torus-like shape of an evolved bubble in a

hydrodynami
al environment and e�e
ts due to anisotropi
 vis
osity might result in 
omparable

gas 
lumping fa
tors when averaging over radial shells. Furthermore, 
hanges in density do not

have to ne
essarily o

ur due to mixing. In fa
t, the 
luster density is also a�e
ted by soundwaves

and adiabati
 expansion or 
ompression of gas.

Therefore, we quantify mixing next by avoiding using a method based on averaging radial

shells. We a
hieve this by plotting the entropy of the tra
er mass fra
tion Xbub as a fun
tion of

time on the right in �gure 4.5. This method is des
ribed by Le
oanet et al. (2016), where they

introdu
e a dye 
on
entration in their simulations, whi
h is analogous to passive s
alars used in

this thesis. Both quantities range from 0 to 1. So the lo
al fra
tion of dye parti
les is similar

to our tra
er mass fra
tion Xbub, ex
ept that Le
oanet et al. (2016) add a di�usion term in the

equation for the evolution of the dye 
on
entration. Although we do not have su
h a term in our

set of Braginskii-MHD equations, we 
an still take advantage of using the dye sin
e we are only

interested in the volume-integrated dye entropy S =
∫

ρs dV . The dye entropy per unit mass is

de�ned as s = −Xbub lnXbub (Le
oanet et al., 2016) and the total dye mass is given by

MX =

∫

V
ρXbubdV. (4.5)

To make the total entropy unitless, we divide S by its maximum entropy Smax = −X∗
bub lnX

∗
bub

∫

ρ dV ,

where X∗
bub =

∫

ρXbubdV/
∫

ρdV = MX/M . The maximum entropy represents the �uid state

where the dye 
on
entration is fully mixed within the �uid. We �nd that a fully mixed 
luster

would have X∗
bub = 0, while a 
ompletely unmixed �uid with Xbub = 0 or Xbub = 1 everywhere

has zero dye entropy. We show the evolution of S/Smax in the right panel of �gure 4.5. We infer

that our hydrodynami
al model shows higher entropy 
ompared to our Braginskii run, whi
h

indi
ates higher level of mixing. The ICM of xB6N2 be
omes to 33% fully mixed at t/t0 = 8,

while the invis
id run rea
hes 37 per
ent of its maximum dye entropy. It be
omes mu
h 
learer

now that anisotropi
 vis
osity suppresses mixing of a buoyantly rising bubble by evaluating the

dye entropy budget of the 
luster than by plotting the 
lumping fa
tor. Note that S/Smax is not
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zero at t/t0, be
ause our bubble has an analyti
al pro�le for the tra
er mass fra
tion initially,

whi
h smoothly transitions from Xbub = 0 to Xbub = 1 (see equation (3.11)).

Figure 4.5.: Left : Mass-weighted gas 
lumping fa
tor Cρ averaged over thin radial shells, evaluated at di�erent

times for both the �du
ial simulation (solid lines) and the hydrodynami
al run (dashed lines). Right :

Volume-integrated dye entropy S as a fun
tion of time, normalised by the maximum entropy Smax

for a fully mixed dye 
on
entration. A fully mixed 
luster has S/Smax = 1

4.1.3. Cooling and Heating

While studying the intera
tions of rising bubbles in a 
luster atmosphere, we are also interested

in measuring the heating rate of the ICM due to MHD transport pro
esses. As des
ribed in

se
tion 2.2.3 the 
avities provide roughly enough energy to balan
e the AGN heating rate with

the radiative 
ooling rate of the 
entral gas. The probably self-regulating me
hanism of heating

and 
ooling is mitigating 
ooling �ows in CCs and preventing its 
ore 
ollapse. The X-ray 
ooling

rateQ−
via bremsstrahlung 
an be estimated from observed X-ray surfa
e brightness maps and is

approximated by Q− = n2Λ(T ), where n is the number density and Λ(T ) is the 
ooling fun
tion

depending on the temperature T . We have already derived Q−
and Λ(T ) in equations (2.13) and

(2.14), respe
tively, where we have integrated the emissivity over all frequen
ies. Normalized

to quantities in our ICs, we get a radiative 
ooling rate (per unit volume) at the 
luster 
enter

analogous to Kunz et al. (2011) of

Q− ≈ 8× 10-27
( n

0.03 cm-3

)2
(

kBT

3.34 keV

)1/2

erg s-1 cm-3. (4.6)

In our simulations we need to 
ompute syntheti
 X-ray images, where we assume the lo
al X-ray

emissivity to be proportional to ρ2T 1/2
and integrate along the line of sight (z-dire
tion) through

the simulation domain (see equation (2.13)). The syntheti
 X-ray images of our �du
ial model

xB6N2 are shown in the �rst 
olumn in �gure 4.7. At the 
luster 
enter, the intensity IX is

the highest sin
e more bremsstrahlung is emitted due to higher number densities 
ausing more

Coulomb 
ollisions at the 
ore. The bubble has very faint emission due to its high temperature

and low density. At early times, the displa
ement of X-ray emission is 
learly seen in the uprising


avity and its morphology shows good agreement with observations. However, despite the fa
t

that we use a relatively high vis
osity 
oe�
ient (about 8 times the Spitzer value, see se
tion

3.1), eddies and perturbations form quite fast at the rim of the bubble, whi
h are a
tually

not observed. And as already dis
ussed, the 
avities are even less 
oherent in the y-z plane

perpendi
ular to the initial magneti
 �eld lines. Later on as the 
avity gets disturbed by KHI

and RTI, more 
luster gas gets mixed with its interior and more bremsstrahlung is radiated away.
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It is un
lear how the AGN energy is a
tually thermalized. Sin
e many heating me
hanism in

galaxy 
lusters are proposed (see se
tion 2.2.5), we will only fo
us on the one arising from pressure

anisotropies ∆p = p⊥ − p‖, whi
h enter Braginskii-MHD as an anisotropi
 vis
osity tensor (see

se
tion 2.3.5). Kunz et al. (2011) show that pressure anisotropies regulate vis
ous heating of a

weakly 
ollisional magnetized plasma. They infer that these lead to lo
al heating rates whi
h

are 
omparable to the radiative 
ooling rates in the ICM, if there is su�
ient turbulent energy

provided, whi
h 
an be thermalized. In addition, they show that the balan
e between vis
ous

heating and radiative 
ooling is thermally stable, whereas it is not with thermal 
ondu
tion,

whi
h arises from an anisotropi
 heat �ux in the Braginskii-MHD equations (whi
h we negle
t

in this thesis).

We des
ribed in se
tion 2.3.5 that the anisotropi
 pressure arises due to the 
onservation of

the �rst adiabati
 invariant for ea
h parti
le on time-s
ales mu
h larger than the ion 
y
lotron

frequen
y: µ = mv2⊥/2B = 
onst. So, any 
hange in magneti
 �eld strength must be a

ompa-

nied by a proportional 
hange in perpendi
ular pressure, su
h that p⊥/B ∼

onst. Certainly, a

turbulent ICM will indu
e time-dependent �u
tuations in B, but also an initial quies
ent ICM

as modelled with xB6N2 will lead to 
hanges in B, sin
e the rising bubbles are subje
t to non-

linear ma
ro-s
ale instabilities like KHI and RTI (see se
tion 4.1). Therefore, regions of positive

(negative) pressure anisotropy will emerge, 
orresponding to lo
ally in
reasing (de
reasing) mag-

neti
 �eld strength, whi
h is plotted in the latter 
olumns of �gure 4.6. We 
an see that most

of the pressure anisotropy is formed at the rim of the bubble, where the primary vorti
es are

going to be indu
ed. The reason is that ∆p is dependent on the rate of strain (see equation 4.9

below) and therefore is asso
iated with turbulent motions. Sin
e the primary vorti
es inje
t the

majority of turbulent energy into the turbulen
e 
as
ade, the highest level of ∆p are rea
hed at

these eddy regions.

Comparing ‖B‖ of the �rst 
olumn of �gure 4.6 with the unlimited ∆p in 
olumn three,


ontradi
torily suggests that the pressure anisotropy is not dependent on magneti
 �eld strength,

whi
h 
an be misleading sin
e xB6N2 is based on an initial β = 106, 
orresponding to ‖B‖ =

0.1µG. In fa
t, re
alling from equation (2.42) shows that we have a magneti
 �eld strength

proportionality as ∆p ∝ d/dt(lnB3ρ-2) ∝ Ḃ/B. So even if B is small, the fra
tional 
hange per

unit time, Ḃ/B, 
an be large. Thus in the �du
ial run, unlimited ∆p is sensitive to 
hanges

in �eld strength, be
ause we see that ∆p ≈ 0 in the trailing region where B is enhan
ed, but

dB/dt ≈ 0 stays roughly 
onstant. If we limit ∆p a

ording to equation (2.48), the pressure

anisotropy is pinned to a very narrow range of possible values due to the extreme plasma beta.

In fa
t, we �nd that ∆p ≈ 30 ×∆plim in the fourth 
olumn of �gure 4.6 and we see now, that

the limited anisotropi
 pressure 
oin
ides with ‖B‖ instead of Ḃ. Regions of positive (negative)

∆p 
orrespond to a stronger perpendi
ular (parallel) thermal pressure 
omponent and are 
olor-


oded in green (brown).

If the pressure anisotropy ∆p be
omes 
omparable to the magneti
 energy density B2/8π,

mi
ro-s
ale instabilities will be triggered (see se
tion 2.3.6), whi
h are not des
ribed by Braginskii-

MHD and are not resolved in our simulations. In kineti
 simulations, these mi
ro-s
ale instabi-

lities regulate pressure anisotropy su
h that they sustain marginal stability (Rosin et al., 2011).

Hen
e, in order to model vis
ous stresses 
orre
tly, ∆p is limited within thresholds for stability

of �rehose and mirror instability (see equation (2.48)),

− 2 <
8π∆plim

B2
< 1, (4.7)

where we abbreviate fplim = 8π∆plim/B
2
for 
onvenien
e, whi
h is plotted in the se
ond and

third 
olumns of �gure 4.7. The di�eren
e between both 
olumns is that the se
ond one takes



55 Chapter 4. Analysis

Figure 4.6.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines for our �du
ial

run xB6N2 showing from left to right the magneti
 �eld strength in mi
ro Gauss, the plasma beta

and the unlimited and limited pressure anisotropy. The last 
olumn is identi
al to the third 
olumn

ex
ept that it shows the proje
ted y-z midplane. Ea
h panel spans a spatial domain 
orresponding

to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width

dr = 0.066 r0 
entered at z = 0.

the unlimited fp and 
lips them to lie within [-2, 1], while the third 
olumn limits fplim before

plotting it as a proje
ted sli
e. The proje
tion represents a small average in z-dire
tion of almost

entirely values being either -2 or 1. Therefore, the third 
olumn appears as if fplim would not

be saturated inside the bubble region, but basi
ally it just shows a shifted mean to smaller

values 
ompared to 
olumn two, where fp ranges up to orders of magnitude of ±103. Eitherway,

�rehose-unstable (mirror-unstable) regions appear as saturated red (violet) pat
hes. We note

that the limiters are just arti�
ially implemented in the post-pro
essing for the presented run

xB6N2. The IC itself has been simulated without limiting ∆p. Thus, sin
e the pat
hes in the

se
ond 
olumn are over-saturated, it shows that mi
ro-s
ale instabilities are ex
ited very qui
kly.

In other words, the pat
hes indi
ate regions of departure from marginal stability. This is not

surprising 
onsidering the very low magneti
 �eld strength (β = 106), whi
h shrinks the range

of the limits in equation (4.7) signi�
antly.

From equation (2.44) we see that ∆p is proportional to the parallel vis
osity 
oe�
ient and


an be interpreted as an anisotropi
 vis
ous �ux. This enables us to 
al
ulate the heating rate

due to parallel vis
ous dissipation of motions. Its derivation follows the arguments presented by

Kunz et al. (2011). Starting from the vis
osity tensor Π, the vis
ous heating rate Q+
is given
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by

Q+ = −Π : ∇v = ∆p

(

bb : ∇v − 1

3
∇ · v

)

. (4.8)

The term in parentheses is the rate of strain, whi
h is related to the ion-ion 
ollision frequen
y

as

νii∆p = 2.88 p

(

bb : ∇v − 1

3
∇ · v

)

. (4.9)

So, the rate of strain indu
es pressure anisotropies, whi
h are relaxed on the ion-ion 
ollision

time-s
ale, whenever turbulent motions o

ur. If we assume that νii is independent from mi
ro-

s
ale instabilities, equation (4.9) states that the produ
tion of pressure anisotropy by ma
ro-s
ale

�uid motions is balan
ed by isotropization via Coulomb 
ollisions. Using equation (4.9) together

with νii = 0.96 p/(ν‖ρ), we 
an rewrite equation (4.8) solely in terms of the pressure anisotropy,

Q+ =
1

2.88
νii

(∆p)2

p
=

(∆p)2

3 ν‖ρ
=

(∆p)2

3µ
, (4.10)

whi
h is always positive (see also Berlok et al. 2019). So, the parallel vis
ous heating rate (per

unit volume) is a
hieved by assuming that the pressure anisotropy is a sour
e of free energy that

is eventually 
onverted into heat by 
ollisions (Kunz et al., 2011). Q+
from equation (4.10) is

plotted in the fourth and �fth 
olumns of �gure 4.7, where the latter is restri
ted by applying

limiters for ∆p. The fourth 
olumn shows that the unlimited vis
ous heating rate is the highest

in the wake of the bubble at early times when the bubble is about to break apart. There, the

rate 
an go up to Q+
max = 3.4Q+

0 , where Q+
0 ≈ 10-25 erg s-1 cm-3

, whi
h is basi
ally the same

value as 
al
ulated by Kunz et al. (2011).. Also the rims of the bubble are quite pronoun
ed

with average heating rates of Q+
avg = 0.01Q+

0 . Converting the 
ode units of typi
al heating rates

into physi
al units yields

Q+
avg = 0.01Q+

0 ≈ 1.1× 10-27 erg s-1 cm-3, (4.11)

Q+
max = 3.4Q+

0 ≈ 3.5 × 10-25 erg s-1 cm-3. (4.12)

The maximum value peaks at about a fa
tor 40 times larger than the radiative 
ooling rate, whi
h

we estimated in equation (4.6), whereas the average value only rea
hes one tenth of the 
ooling

rate. This means that unlimited Braginskii heating is 
apable of balan
ing radiative 
ooling at

some lo
al regions, but it is not throughout the entire 
luster 
ore and not 
ontinuously over

time. As the vis
osity 
oe�
ient is quite high, vis
ous stresses 
an have an e�e
t on the �uid

motion and dissipate into thermal energy. At later times the turbulent motions get weaker and


on
omitant pressure anisotropy, whi
h is quadrati
ally proportional to the heating rate. Hen
e,

the latter de
reases a

ordingly. By looking at the y-z plane (see �fths 
olumn of �gure 4.6), a

similar pi
ture be
omes apparent. Ex
ept for the strong heating rate in the wake at t/t0 = 2,

the values for vis
ous heating perpendi
ular to the x-y plane lie in the same range and are

pronoun
ed at the rim of the evolving bubble. The last 
olumn of �gure 4.7 shows again parallel

vis
ous heating, but with hard-wall limited ∆p. The 
olorbar is s
aled in a similar interval

as before multiplied by 10. So the limited values are weaker by roughly a fa
tor of 20 overall


ompared to the unlimited ones. In addition, vis
ous heating appears at di�erent regions now,

be
ause the pressure anisotropy is mu
h more sensitive to 
hanges in the magneti
 �eld strength

in the limited 
ase. This 
an be seen in the upper panel at t/t0 = 2, where the very weak

magneti
 �eld lines have not been mu
h 
ompressed or stret
hed yet 
ompared to the initial

uniform alignment. Together with equation (4.7), yields that ∆plim be
omes mu
h smaller than
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∆p if B2
stays very weak. Only when B2

is lo
ally in
reasing in 
ompressed regions, ∆plim
be
omes noti
eably larger. It is useful to 
ompare 
olumn �ve of �gure 4.7 with 
olumn four of

�gure 4.6 to infer that both Q+
lim and ∆plim/p 
oin
ide with ea
h other.When the rising bubble

evolves, the �eld lines get 
ompressed, the magneti
 �eld gets enhan
ed and pressure anisotropy

indu
ed in these regions is limited by a smaller fa
tor, whi
h in turn leads to vis
ous heating.

Figure 4.7.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines for our

�du
ial run xB6N2 showing the syntheti
 X-ray surfa
e brightness map, the departure from marginal

stability for the pressure anisotropy and the parallel vis
ous heating rate (both ea
h unlimited and

limited a

ording to equation (2.49)). Ea
h panel spans a spatial domain 
orresponding to dimensions

x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width dr = 0.066 r0

entered at z = 0.

We show the volume-weighted average heating and 
ooling rate separately over time in �gure

4.8. The left sub�gure shows that the 
ooling rate averaged over the entire spatial domain stays

nearly 
onstant at Q− = 10-26 erg s-1 cm-3
, whereas the average unlimited vis
ous heating rate

does not in
rease above Q+ = 10-29 erg s-1 cm-3
, whi
h puts the latter to the same order of

magnitude as the lo
al (non-averaged) limited heating rate Q+
lim. Instead of looking at the total


luster average, we plot the average heating rate of the bubbles in the right sub�gure, where we

de�ne a bubble 
ell if the passive tra
er ex
eeds 10-3. The 
ooling rate is now slightly de
reasing

over time, sin
e the bubble rises upwards into lower dense regions of the 
luster 
ore. The average

bubble heating rate is only one order of magnitude smaller than 
ooling at early times, when

ma
ro-s
ale instabilities indu
e turbulent motions, whi
h produ
es pressure anisotropy. So, with

an initially very weak, non-turbulent magneti
 �eld, parallel vis
ous heating is not 
apable of
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balan
ing 
ooling throughout the bulk of the ICM. It only be
omes quite noti
eable in the bubble

region itself over a short time-s
ale. The dependen
e on the bubble lo
ation be
omes 
lear by

looking at the radial pro�les in �gure 4.9. The region in�uen
ed by bubble motions adiabati
ally

expands over time and dissipates energy a
ross a larger range of radial shells. But as already

pointed out, the average vis
ous heating rate nowhere rea
hes signi�
antly high values 
ompared

to radiative 
ooling for our �du
ial model.

Figure 4.8.: Left : Time evolution of the volume-weighted averaged heating and 
ooling rate in physi
al units.

Right : Same as left sub�gure, but restri
ted to bubble 
ells with Xbub > 10-3.

Figure 4.9.: Left : Mass-weighted radial pro�les of the ratio between heating and 
ooling rate at spe
i�
 times.

Right : Mass-weighted radial pro�les of the heating rate (solid lines) and 
ooling rate (dashed line) in

physi
al units at spe
i�
 times. The 
ooling rate stays nearly 
onstant at all times.
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4.2. Uniform B, β = 10
6

So far, we have des
ribed and analysed the global evolution of our �du
ial run xB6N2, whi
h

models the ICM as an extremely weakly magnetized plasma. We also inferred vis
ous heating

rates from the �uid motions having a Reynolds number of approximately 50, while the pressure

anisotropy was not limited. In se
tion 4.2.1 we analyse the results when on the one hand the

vis
osity 
oe�
ient is redu
ed by a fa
tor of ten as in model xB6N3 (yielding Re = 500), and

on the other hand when the vis
osity is not redu
ed spe
i�
ally, but the pressure anisotropy is

limited as in model xB6N2lim a

ording to the thresholds given by equation (2.48). In se
tion

4.2.2 we analyse how an isotropi
 Braginskii vis
osity a�e
ts the evolution of an buoyantly rising

bubble. The initial orientation and the strength of the magneti
 �eld is kept un
hanged in all of

these three 
ases.

4.2.1. Parameter Study - Redu
ing and Limiting ν‖

For run xB6N3, the redu
ed vis
osity 
oe�
ient implies an in
reasing Reynolds number to

Re = 500. As pointed out in se
tion 3.1, this results in a modelled ICM, whi
h is just about 20

per
ent as vis
ous as we have estimated for the Spitzer value. So, it should be mu
h less e�
ient

in suppressing KHIs or vis
ous heating than our �du
ial run. We expe
t a similar out
ome

for xB6N2lim, if the limiters are applied to pressure anisotropy sin
e the interval where ∆p is

not pinned to marginal stability be
omes very narrow for a very high plasma beta (see se
tion

4.1.3). We 
an see its evolution in morphology in �gure 4.10, where the passive tra
er mass

fra
tion is plotted for several di�erent Braginskii runs and 
ompared to the hydrodynami
al

run in the �rst 
olumn. The rising bubbles show no striking di�eren
es between runs hydro,

xB6N2lim and xB6N3. This implies that �rstly, the mi
ro-s
ale instabilities are triggered so

fast in xB6N2lim that a
tually very little pressure anisotropy 
an be produ
ed, whi
h indu
es

vis
ous stresses. Se
ondly, the unlimited vis
ous stresses in xB6N3 are not strong enough

to suppress RTI e�e
tively and the bubble material gets mixed with the ambient medium on

time-s
ales 
omparable to the hydro run. Therefore, in order to resemble the 
oherent 
avities

observed in X-ray surfa
e brightness maps, the vis
osity 
oe�
ient must be at least 
lose to the

Spitzer value. Furthermore it is interesting to note, if we 
ompare the wake of xB6N2lim with

xB6N2, we identify just a mono-line of verti
ally stripped gas in the limited run, whereas in the

unlimited 
ase there are 
learly two proje
ted stripes of gas visible. These stripes also indi
ate

enhan
ed magneti
 �eld strengths due to stret
hed/
ompressed �eld lines. From this point of

view, xB6N3 seems to be an intermediate 
ase, where the duality is slightly apparent. Also the

bubble front of xB6N2 at t/t0 = 2 is wider 
ompared to xB6N2lim, where the morphology has

more like a bullet shape.

How well ea
h model mixes its bubble material with the ambient ICM 
an be seen in �gure

4.11, where we plot the volume-integrated passive tra
er entropy S as a fun
tion of time (see

se
tion 4.1.2). The two models being dis
ussed in this se
tion have levels of entropy 
lose to the

hydro run, implying nearly unsuppressed mixing rates. Thereby, the limited run with ν‖ = 10-2

is slightly less vis
ous than the unlimited run with ν‖ = 10-3. Hen
e, 
on�rming our qualitative

analysis. The violet line representing the isotropi
 model di�ers signi�
antly and will be dis
ussed

in se
tion 4.2.2. We �nd the following ordering

Shydro > Slim > SBrag > Siso, (4.13)

pre
isely as expe
ted.
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Figure 4.10.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines showing the

tra
er mass fra
tion Xbub for several models in
luding from left to right hydro, xB6N2lim, xB6N3
and the �du
ial run xB6N2. Ea
h panel spans a spatial domain 
orresponding to dimensions

x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width dr = 0.066 r0

entered at z = 0.

Figure 4.11.: Volume-integrated dye entropy S as a fun
tion of time, normalised by the maximum entropy Smax

for a fully mixed dye 
on
entration. A fully mixed 
luster has S/Smax = 1. It shows the mixing

e�
ien
y of the bubble material for the given runs or in other words how vis
ous the evolving bubbles

be
ome.
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In the �rst three 
olumns of �gure 4.12 we show the evolution over time of the limited pres-

sure anisotropy, the limited range of marginal stability and the limited vis
ous heating rate for

xB6N2lim. By dire
tly 
omparing the "physi
ally" limited ∆plim (�rst 
olumn) with the "arti-

�
ially" limited one of xB6N2 in the fourth 
olumn of �gure 4.6, we 
an infer that the bubble

region produ
es ten times more pressure anisotropy in the former 
ase.

The parallel vis
ous heating rates for simulation xB6N2lim (third 
olumn of �gure 4.12) are

fairly of the same order of magnitude than the unlimited rates Q+
for xB6N2 shown in the fourth


olumn of �gure 4.7. In addition, we 
an infer that the "physi
ally" limited ∆p in xB6N2lim

lo
ally indu
es about one order of magnitude more vis
ous heating than the "arti�
ially" limited

∆p in xB6N2. So, after 
onsidering both "physi
ally" and "arti�
ially" mixing and heating

rates, it be
omes 
lear that it is not su�
ient to simply mimi
 limited pressure anisotropy by


lipping its values during the post-pro
essing after the simulation has been already run.

The last three 
olumns of �gure 4.12 show the unlimited results of ∆p, fp and Q+
for run

xB6N3. The unlimited vis
ous heating rates are smaller than about a fa
tor of ten 
ompared to

xB6N2. This might be quite surprising as Q+
is proportional to 1/ν‖, naively indi
ating that

lowering the vis
osity 
oe�
ient would result in an in
reased heating rate. But sin
eQ+ ∝ (∆p)2,

the produ
tion of the latter must be 
onsidered more powerful. And indeed, by 
omparing ∆p of

xB6N3 with xB6N2 (third 
olumn of �gure 4.6) we infer that ∆p(xB6N2) ≈ 10×∆p(xB6N3),

resulting in a ten times smaller heating rate for xB6N3, 
onsidering that ν‖(xB6N2) = 10 ×
ν‖(xB6N3).

Nonetheless, xB6N2lim and xB6N3 show di�erent bubble regions where vis
ous heating

emerges. The reason is the same as we have already dis
ussed in se
tion 4.1.3 and o

urs

be
ause of the extremely high plasma beta. If ∆p is limited, it be
omes sensitive to 
hanges in

magneti
 �eld strength. Where the �eld lines get 
ompressed, pressure anisotropy is produ
ed

whi
h enters vis
ous heating quadrati
ally. If it is unlimited, produ
tion of ∆p is dominated by

the rate of strain of turbulent motions. We do not present radial pro�les of the Q+/Q−
ratio or

the alike, be
ause the graphs are quite similar to the ones plotted for xB6N2, ex
ept that the

heating rates are even weaker.
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Figure 4.12.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines showing from

left to right the limited pressure anisotropy, departure from marginal stability and vis
ous heating

for xB6N2lim, and the unlimited∆p, fp and Q+
for run xB6N3. Ea
h panel spans a spatial domain


orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion
have width dr = 0.066 r0 
entered at z = 0.



63 Chapter 4. Analysis

4.2.2. Isotropi
 Vis
osity

Instead of modelling buoyantly rising bubbles a�e
ted by anisotropi
 vis
osities within Braginskii-

MHD, we take the isotropi
 vis
osity tensor as introdu
ed in equation (2.47) and dis
uss in this

se
tion how the bubbles evolve if the vis
ous stresses are not dependent on the dire
tion of the

magneti
 �eld lines. We 
an see the isotropi
 result with Re = 50 in �gure 4.13, whi
h we


an 
ompare with the isotropi
 runs "5" from Reynolds et al. (2005) and "H2" from Dong and

Stone (2009). As our tra
er mass fra
tion and syntheti
 X-ray image show, Navier-Stokes vis-


osity suppresses KHIs and RTIs and thus prevents mixing quite e�
iently. Dire
tly 
omparing

xB6N2iso with xB6N2 reveals a drasti
ally altered bubble evolution, where the bubble remains

inta
t throughout the simulation time. Espe
ially the bubble front stays 
oherent and undis-

turbed from ma
ro-s
ale instabilities. However, a mushroom-like trailing region is forming over

time, whi
h is in good agreement with the �ndings by Reynolds et al. (2005); Dong and Stone

(2009). The syntheti
 X-ray surfa
e brightness map also mat
hes with observations of X-ray


avities in real galaxy 
lusters (see �gure 2.2 for Perseus-A). The isotropi
 mixing rate is plotted

as the violet line in �gure 4.11 indi
ating that the entropy of the passive tra
er rea
hes only

17% of its maximum entropy level for a fully mixed ICM at t/t0 = 8. This value is about one

half of the run xB6N2 with anisotropi
 vis
osity at the end of the simulation. Hen
e, the latter

is not as e�
ient as an isotropi
 vis
osity at suppressing KHI, be
ause the e�e
tive anisotropi


vis
osity is dependent on the �eld line dire
tion and therefore its damping e�e
t on motions is

redu
ed.

From the vorti
ity map, showing the absolute 
url of velo
ity ‖(∇ × v)‖ in units of 1/t0, we


an infer that the bubble interior is relatively quies
ent and not driven by turbulent motions.

Although the highest levels of vorti
ity are indu
ed at the rim of the bubble as it rises upwards

the 
luster atmosphere, these are not su�
iently high to trigger KHI or RTI. In addition, pressure

support might play a role in form of draping of magneti
 �eld lines at the bubble front, where

magneti
 pressure is enhan
ed by nearly a fa
tor of 100. The isotropi
 morphology and vorti
ity

generation resembles the �ndings by Dursi and Pfrommer (2008) performing 3D simulations of

overdense bubbles rising in an initially uniformly magnetized medium.

We note that a run with an isotropi
 Navier-Stokes vis
osity of νiso = 10-3 (Re = 500) does

not show a 
oherent bubble surfa
e. Note that this level of vis
osity is roughly ∼ 80% νsp the

Spitzer value (see se
tion 3.1), whi
h is quite interesting 
onsidering the following study. Using

deep Chandra observations of the Coma 
luster, Zhuravleva et al. (2019) �nd from analysing

density �u
tuations down to the vis
ous dissipation s
ale that the e�e
tive isotropi
 vis
osity in

the bulk ICM is suppressed by a fa
tor of ∼ 100 by 
omparing with hydrodynami
 simulations

based solely on Coulomb 
ollision rates. This implies that the 
luster gas appears to be mu
h

more turbulent with a large e�e
tive Reynolds number and that their results �t best with hydro-

dynami
 simulations using level of isotropi
 vis
osity with νiso ∼ 0.01 νsp of the Spitzer value. In

�gure 4.13, our isotropi
 vis
osity 
oe�
ient is roughly 8 times as vis
ous as the Spitzer value. If

we lower νiso by one order of magnitude (∼ 80% νsp), the evolution of our bubble shows emerging

KHIs resulting in disrupted bubble interfa
es. We suppose that if we would have run another

simulation with νiso ∼ 1% νsp (
onsistent with Zhuravleva et al. 2019), the bubble would have

been shredded mu
h sooner not resembling the morphology of observed (ghost) 
avities. The-

refore, isotropi
 dissipation of momentum is not very likely the 
orre
t physi
s for suppressing

�uid ma
ro-instabilities. Zhuravleva et al. (2019) 
on
lude that the suppressed e�e
tive vis
osity


an be explained by preferring non-hydrodynami
 models in
luding anisotropi
 transport and

plasma mi
ro-instabilities in order to a

ount for the enhan
ed 
ollision rates.
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Figure 4.13.: Proje
ted sli
es of the x-y midplane parallel to the initially uniform magneti
 �eld lines showing

from left to right the tra
er mass fra
tion, the line-of-sight integrated X-ray emissivity, the abso-

lute vorti
ity in units of t0, the plasma beta and the magneti
 �eld strength in mi
ro Gauss for

run xB6N2iso. The �rst, fourth and �fth 
olumns show streamlines of the magneti
 ve
tor �eld,

while the third 
olumn shows the ve
tor �eld of the velo
ity. Ea
h panel spans a spatial domain


orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion
have width dr = 0.066 r0 
entered at z = 0.
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4.3. Uniform B, β = 100

In this se
tion we present model xB2N2lim, where we keep the initially uniformly magnetized

medium, but in
rease the magneti
 �eld strength from ‖B‖ = 0.1µG to ‖B‖ = 9µG by setting

the plasma beta to β = 100. Additionally, our modelled B-�eld be
omes radially dependent on

the density su
h that B(r) = ρ(r)1/2, whi
h is in a

ordan
e with the �ndings by Bonafede et al.

(2010) for �tting an isothermal 
luster pro�le (see se
tion 2.3.3). Figure 4.14 shows qualitatively

the mixing e�
ien
y and the evolution in morphology of the rising bubble of run xB2N2lim

by plotting the tra
er mass fra
tion Xbub and the line-of-sight integrated X-ray intensity IX =

ρ2T 1/2
. Odd 
olumns show the proje
ted x-y midplane, while even 
olumns show the y-z

midplane perpendi
ular to the uniformly aligned �eld lines. A striking di�eren
e between the

two planes be
omes immediately apparent. The plasma beta is now four orders of magnitude

greater than in the dis
ussed models before, hen
e making the anisotropi
 e�e
t of magneti


tension pronoun
ed. The magneti
 �eld is so strong that the ma
ro-s
ale �uid motions be
ome

two-dimensionalized with respe
t to the magneti
 �eld dire
tion. In the x-y midplane parallel

to the �eld, RTIs are suppressed by high magneti
 tensions and vis
ous stresses. Conversely, in

the y-z midplane perpendi
ular to the �eld, neither Braginskii vis
osity nor magneti
 tension is

very e�
ient in suppressing RTI and we see elongated �ngers emerging from the rising bubble.

Figure 4.14.: Proje
ted sli
es of xB2N2lim alternating between the x-y midplane parallel to the initially uniform

magneti
 �eld lines and the y-z midplane perpendi
ular to it. The �rst two 
olumns show the tra
er

mass fra
tion Xbub with streamlines of the magneti
 ve
tor �eld, the middle 
olumns the syntheti


X-ray surfa
e brightness map and the last two 
olumns the absolute vorti
ity with streamlines of the

velo
ity ve
tor �eld. Ea
h panel spans a spatial domain 
orresponding to dimensions [-1.5 r0, 1.5 r0]
and [0, 3 r0]. The thin proje
tions have width dr = 0.066 r0.

The o

urren
e of these �ngers might be supported by the fa
t that the initial bubble region
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has not been magneti
ally isolated from the ambient uniformly aligned �eld lines. As des
ribed

in se
tion 2.3.1 the plasma �uid is tied to the �eld lines. So as the bubble buoyantly rises, it

drags the �eld lines with it, whi
h inhibits the bubble material to es
ape due to the relatively

high magneti
 tension e�e
ts. Together with the fast-growing RTI, where perturbations are quite

unsuppressed in the perpendi
ular dire
tion, the elongated �ngers be
ome apparent as a physi
al


onsequen
e.

The magneti
 �eld strength and the limited pressure anisotropy 
an be seen for both midplanes

in �gure 4.15. We �nd that the produ
tion of ∆plim rea
hes roughly the same order of magnitude

as the unlimited ∆p in run xB6N2 (see �gure 4.6). Therefore, as long as the magneti
 pressure of

the ICM is su�
iently large 
ompared to the thermal pressure, the pressure anisotropy 
lipped to

lie within kineti
ally motivated thresholds does not shrink noti
eably and simultaneously mixing

is suppressed by magneti
 tension. This is in 
ontrast to a very weakly magnetized ICM where

∆plim indu
ed vis
ous stresses alone are not 
apable of keeping the bubble material unmixed

(see se
tion 4.2.1). We have ran both xB2N2 and xB2N2lim, but fo
us only on the latter

in this se
tion, be
ause both look very similar in terms of morphologi
al evolution and their

derived quantities. They do not di�er mu
h, be
ause both ∆p and ∆plim vastly never trigger the

�rehose or mirror mi
ro-instabilities, whi
h 
an be seen in the latter two 
olumns of �gure 4.15

for xB2N2lim. Ex
ept for the y-z midplane at t/t0 = 2 the thresholds for marginal stability are

almost nowhere rea
hed. Note that we plot fp here without proje
tion to ensure not to dilute

the panels with a mean 
omputed from averaging positive and negative values. If the mi
ro-s
ale

instabilities are never triggered, then implies that the vis
ous stresses 
an be entirely des
ribed

by Braginskii-MHD and are not inhibited at some spatial regions. In this 
ase we do not expe
t

to see a physi
ally motivated disagreeing out
ome by 
omparing xB2N2 and xB2N2lim.

Therefore, we fo
us on analysing ∆plim of run xB2N2lim in the middle two 
olumns of �gure

4.15. The bubble interior itself and its trailing region are dominated by the parallel pressure


omponent (
olor-
oded in brown), whereas the rim of the bubble is dominated by the pressure


omponent perpendi
ular to the lo
al magneti
 �eld lines (
olor-
oded in dark-green). The

regions where ∆plim is indu
ed 
oin
ide quite well with regions of higher levels of vorti
ity, whi
h


on�rms that pressure anisotropy is produ
ed where �uid motions generate a non-negligible

amount of rate of strain, whi
h is not dependent on the strength of the magneti
 �eld (see

equation 2.44). Whether ∆plim is positive or negative depends partially on the lo
al dire
tion

of the �eld line b and also on the gradient and divergen
e of velo
ity. So one 
an tell from

∆p ∝ d/dt(lnB3) ∝ bb : ∇v∇·v) whether the magneti
 �eld is in
reasing in time or de
reasing.

It is quite interesting to note that both proje
ted midplanes do not signi�
antly di�er in the

amount of pressure anisotropy they produ
e.

In order to 
larify that it physi
ally does not matter for the bubble evolution whether the

anisotropi
 pressure is limited or not, we plot the vis
ous heating rates for the simulations xB2N2

and xB2N2lim in �gure 4.16. It be
omes evident that not only are the buoyantly rising bubbles

evolving quite similar, but also dissipate nearly the same amount of heat, whi
h is 
omparable

to the unlimited vis
ous heating rate of xB6N2 with β = 106 in �gure 4.7. Hen
e, the rate of

vis
ous heat Q+
seems to be not dependent on the initial plasma beta used for modelling the

ICM of an isothermal 
luster 
ore, if one ignores the kineti
 limiters. On the other hand, it does

depend signi�
antly if the limiters are 
onsidered.

If the pressure anisotropy is driven to be at marginal stability of the mi
ro-s
ale instabilities

a

ording to equation (2.49), we 
an rewrite the expression for vis
ous heating (4.10) together
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Figure 4.15.: Proje
ted sli
es of xB2N2lim alternating between the x-y midplane parallel to the initially uniform

magneti
 �eld lines and the y-z midplane perpendi
ular to it. The �rst two 
olumns are showing

the magneti
 �eld strength in mi
ro Gauss ‖B‖, the middle 
olumns the limited pressure anisotropy

∆plim and the last two 
olumns departure from marginal stability fp. Ea
h panel spans a spatial

domain 
orresponding to dimensions [-1.5 r0, 1.5 r0] and [0, 3 r0]. Ex
ept for the latter two, the thin
proje
tions have width dr = 0.066 r0.

with the Spitzer vis
osity of equation (2.30) to

Q+
lim = 7.7× 10-27 ξ2

( ‖B‖
10µG

)4( kBT

3.34 keV

)−5/2

erg cm-3 s-1, (4.14)

where ξ is either -2 (p‖ dominated �rehose unstable) or 1 (p⊥ dominated mirror unstable). In

fa
t, equation (4.14) assumes that ∆plim rea
hes marginal stability in the entire spatial domain

su
h that there is no spatial region where the mi
roinstabilities are not triggered. Note the

strong dependen
e on magneti
 �eld strength, Q+ ∝ B4
, whi
h be
omes immediately 
lear here


ompared to equation (4.10). We 
an infer that lo
ally Q+
lim ≈ Q−

by 
omparing the limited

heating rate (4.14) with the 
ooling rate (4.6) if normalised to the same ICs. This is only to

some extent 
onsistent with the results found by Kunz et al. (2011). In fa
t our estimate (per

unit volume) in equation (4.14) is equal to the one stated by Kunz et al. (2011), but they 
laim

that both vis
ous heating and radiative 
ooling should approximately balan
e themselves at all

radii inside the 
luster 
ore due to turbulent dissipation, Q+
lim(r) ≃ Q−(r). This is not what we

infer from plotting the mass-weighted radial pro�les for the ratio Q+/Q−
at di�erent times of

the bubble evolution for runs xB2N2 and xB2N2lim in the right sub�gure of 4.17. Instead we

see that the ratio only barely rea
hes 10-2 inside the bubble region at early times. At later times

the ratio shrinks 
ontinuously down to several 10-4, whi
h 
an be also seen in the left sub�gure

of 4.17, where we plot both rates separately restri
ted to 
ells 
lassi�ed as bubble material as
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a fun
tion of time. Outside the bubble region vis
ous heating rates are negligibly small and

are not even 
lose to balan
e radiative 
ooling. This seems to be in 
ontrast with Kunz et al.

(2011). However they assume a turbulent ICM with a 
onstant sour
e of driving the turbulent

motions, where the produ
tion of pressure anisotropy triggers the mi
ro-s
ale instabilities in

order to sustain marginal stability within limits already derived in equation (4.7). These limits

are fp = [-2, 1], where fp = 8π∆p/B2
. In our simulation setup, the bubble does not drive su
h

strong motions in a volume �lling fashion.

Figure 4.16.: Proje
ted sli
es alternating between the x-y midplane parallel to the initially uniform magneti


�eld lines and the y-z midplane perpendi
ular to it. The �rst two 
olumns show the unlimited

parallel vis
ous heating of xB2N2 and the last two 
olumns the limited parallel vis
ous heating

of xB2N2lim. Ea
h panel spans a spatial domain 
orresponding to dimensions [-1.5 r0, 1.5 r0] and
[0, 3 r0]. The thin proje
tions have width dr = 0.066 r0.

We try to reprodu
e their assumption by restri
ting fp for ea
h 
ell in our 
omputational

domain to be exa
tly either -2 or 1. This allows us to quantify the vis
ous heating rate as a

theoreti
ally maximum averaged over the entire 
luster 
ore, whi
h is plotted in the left sub�gure

of 4.18 as a fun
tion of time. We infer that indeed the average Q+
be
omes 
omparable to the

radiative 
ooling rate as the ratio between both stays almost 
onstantly at one at all radii (see

right sub�gure of 4.18). Therefore, we 
on
lude that the estimated balan
e by Kunz et al.

(2011) is satis�ed with our ICs 
onsidering the given assumptions. So on 
ondition that a
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luster atmosphere has a steady sour
e of driving turbulen
e, parallel vis
ous heating in terms

of a spe
i�
 heating me
hanism among several others 
an be potentially high enough to not be

negle
ted in order to solve the 
ooling �ow problem. In our simulation setup, however, the AGN

bubble on its own is not a su�
ient sour
e. Other sour
es of driving, e.g. mergers, 
ould in
rease

the heating rate (see dis
ussion in 
hapter 5).

Figure 4.17.: Left : Time evolution of the volume-weighted averaged heating and 
ooling rate in physi
al units,

restri
ted to bubble 
ells with Xbub > 10-3. Solid lines show the rates for the unlimited run xB2N2
and dashed lines for the limited run xB2N2lim. Right : Mass-weighted radial pro�les of the ratio

between heating and 
ooling rate for both models at spe
i�
 times.

Figure 4.18.: Left : Volume-averaged vis
ous heating rate and radiative 
ooling rate for the entire 
luster domain

as if the pressure anisotropy for ea
h 
ell has a value exa
tly su
h that the lower (upper) threshold for

rea
hing marginal stability by triggering the �rehose (mirror) mi
ro-instability is taken, plotted as

the dashed (dotted) line. The orange solid line represents the 
ase as if for ea
h 
ell fp = 8π∆plim/B
2

is randomly given either the lower or the upper limit value. Right : Similar to left sub�gure but now

plotted as mass-weighted radial pro�les at time t/t0 = 4.
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4.4. Turbulent B, β = 100

After dis
ussing in detail the di�erent models with an uniformly magnetized ICM in previous

se
tions, we analyse the model tB2N2lim in this se
tion, where the magneti
 �eld is initialized

a

ording to a Kolmogorov power spe
trum at an inje
tion s
ale slightly larger than the bubble

size (the 
hara
teristi
 length s
ale). The magneti
 �eld 
on�guration is des
ribed in se
tion

3.1.1. Its result is a turbulent ICM with a roughly 
onstant plasma beta and internal energy

throughout the spatial domain with a �eld strength dependen
e on density as B ∝ ρ1/2 and mag-

neti
ally isolated bubbles. These properties make the turbulent magneti
 �eld model tB2N2lim

our most sophisti
ated model presented in this thesis.

In se
tion 4.3 we showed that simulations with β = 100 display roughly the same behaviour

regardless of whether pressure anisotropi
 limiters are used or not. Thus, we 
hoose to solely show

the physi
ally more relevant simulation tB2N2lim where ∆plim is limited. The bubble evolution

is plotted in �gure 4.19 for both the proje
ted x-y and the y-z midplane. In 
omparison to the

uniform magneti
 �eld alignment with β = 100 dis
ussed previously in se
tion 4.3, we do not

see elongated Rayleigh-Taylor �ngers or mushroom-like vortex-rings emerging in the turbulent

ICM. We do see di�erent patterns in how the bubble gets mixed with the ambient gas between

the two presented midplanes. One spatial dire
tion seems to be more e�
ient in suppressing

ma
ro-s
ale instabilities than the other. We assume that this observation is simply due to the

Gaussian random distribution of the initial magneti
 �eld in k-spa
e.

Figure 4.19.: Proje
ted sli
es of tB2N2lim alternating between the x-y midplane and the y-z midplane. The

�rst two 
olumns are showing the tra
er mass fra
tion Xbub with superimposed streamlines of the

magneti
 ve
tor �eld, the middle two 
olumns the syntheti
 X-ray surfa
e brightness maps ρT 1/2
and

the last two 
olumns show the velo
ity �eld v/v0. Ea
h panel spans a spatial domain 
orresponding

to dimensions [-1.5 r0, 1.5 r0] and [0, 3 r0]. The thin proje
tions have width dr = 0.066 r0.
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Nonetheless, the overall mixing and dissipation rates are relatively high. Neither the magneti


tension e�e
ts nor the vis
ous stresses are 
apable of suppressing RTI and KHI on longer time-

s
ales, not even in the x-y plane where the bubble interior stays most 
oherent over time. The

turbulent �uid motions be
ome strongly anisotropi
 due to the Lorentz for
e and the turbulent

eddies dissolve in the turbulent 
as
ade and intera
t between di�erent modes (see se
tion 2.3.3).

In �gure 4.20 we 
ompare several quantities, whi
h are all linked together physi
ally as we

already pointed out by dis
ussing them in previous se
tions. The pressure anisotropy is pro-

portional to the rate of strain (see equation 2.44), whi
h in turn depends on turbulent motions

represented by the 
url of the velo
ity ve
tor - the vorti
ity. ∆p also in
reases with an enhan
ed

magneti
 �eld (see equation 2.42), indu
ed by 
ompressed �eld lines and represented by the mag-

neti
 �eld strength and the plasma beta. Furthermore, the produ
tion of anisotropi
 pressure

is an indi
ator for how mu
h vis
ous heating dissipates into the ICM. By looking at the fourth


olumn in �gure 4.20, we do see the same levels of ∆plim in the rising bubble and its wake as in

xB2N2lim. Additionally, also the ambient gas be
omes anisotropi
 to relevant amounts due to

the turbulent motions. The ambient pressure anisotropy is mainly negative indi
ating that on

the one hand the magneti
 �eld lines get rather stret
hed than 
ompressed or on the other hand

the inje
ted turbulent velo
ities fade out and their gradients de
rease. At lo
ally 
on�ned regions

∆plim triggers the �rehose (mirror) instability as 
an be seen in the �fths 
olumn as saturated

red (violet) small pat
hes. However, the majority of the plasma lies within fp = 8π∆plim/B
2
,

where no 
lipping is needed in order to keep the MHD des
ription of the �uid appli
able. Note

that fp is not shown in proje
tion to avoid plotting a smoothed out average value.

The vis
ous heating rate lies in the same order of magnitude as in the other simulations with

a non-turbulent �eld. A noti
eable di�eren
e in run tB2N2lim is the fa
t that at early times

not only the bubble interior itself rea
hes relevant heating rates, but also the ambient ICM

produ
es enough ∆plim to indu
e su�
iently high levels of Q+
. Sin
e there is no driver for


onstantly inje
ting turbulen
e into our 
luster atmosphere, the initial turbulent motions start

to dissipate their kineti
 energy and the ambient gas be
omes quies
ent again at later times as

in the uniformly magnetized models. Here, by initial we mean that the turbulent velo
ities are

entirely introdu
ed by the Lorentz for
e due to the tangled magneti
 �eld, be
ause they are set

to zero at t/t0 = 0. The additional sour
e of heat from the turbulent ICM however, is still not


apable of balan
ing the radiative 
ooling rate as 
an be seen in �gure 4.21. We note that we

a

ount for vis
ous heating from the ambient turbulent motions in the left sub�gure by using

the vorti
ity map as a new threshold for averaging Q+
instead of the tra
er mass fra
tion. Even

so, Q+
turb is still about a fa
tor of ten smaller than Q−

at early times and drops down to even a

hundredth of the latter later on, whi
h is basi
ally repeating the same graph as for Q+
bub of run

xB2N2lim in �gure 4.17.

The mass-weighted radial pro�les in the right sub�gure of 4.21 reveal a similar result. Alt-

hough the limited turbulent run shows slightly higher heating-to-
ooling ratios 
ompared to the

unlimited turbulent simulation tB2N2, the overall pi
ture shows that Q+/Q−
de
reases 
onti-

nuously with time. As in xB2N2lim the ratio barely rea
hes values of 10-2 at the beginning

of the simulation, where the initially inje
ted turbulent velo
ities 
ontribute most of the ICMs

pressure anisotropy to support vis
ous heating. This be
omes apparent as the orange line stays

relatively 
onstant at Q+/Q− ≈ 2 × 10-3 even at the outer radii, whereas for xB2N2lim in

�gure 4.17 vis
ous heating establishes itself only inside the bubble region and drops down to

Q+/Q− ≈ 2 × 10-6 at the outer radii for the same time t/t0 = 2. At later times the turbulent

motions get dissipated and in turn no new turbulent energy sour
es are introdu
ed (ex
ept for

RTI and KHI indu
ed turbulent eddies). Hen
e, the overall Q+/Q−
ratio de
reases down to

∼ 10-3 for the bubble region and even lower at the ambient radii. This shows that turbulent
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vis
ous heating as 
omputed in our isothermal 
luster model is still too low in terms of being

a neutralising agent for radiative 
ooling throughout s
ales of spa
e and time. Nonetheless, as

we pointed out with �gure 4.18, vis
ous heating has the potential in doing so, if there would be


onstant driving of turbulen
e in the 
luster 
ore su
h that pressure anisotropy would steadily

be lying within levels of marginal stability.

Figure 4.20.: Proje
ted sli
es of the x-y midplane showing from left to right the magneti
 �eld strength in mi
ro

Gauss, the plasma beta, the absolute vorti
ity, the limited pressure anisotropy, the departure from

marginal stability fp and the vis
ous heating rate. The �rst and se
ond 
olumns show streamlines of

the magneti
 ve
tor �eld, while the third 
olumn shows the ve
tor �eld of the velo
ity. Ea
h panel

spans a spatial domain 
orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin
proje
tions (ex
ept for fp) in z-dire
tion have width dr = 0.066 r0 
entered at z = 0.

Figure 4.21.: Left : Time evolution of the volume-weighted averaged heating and 
ooling rate in physi
al units,

restri
ted to grid 
ells with vorti
ity levels ex
eeding ‖(∇ × v)‖ > 5/t0. Solid lines show the rates

for the unlimited run tB2N2 and dashed lines for the limited run tB2N2lim. Right : Mass-weighted

radial pro�les of the ratio between heating and 
ooling rate for both models at spe
i�
 times.
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4.5. Sanity Che
k and Convergen
e Test

As a last part of our analysis, we 
he
k on the one hand that our ICs show numeri
al 
onvergen
e

and on the other hand if they maintain hydrostati
 equilibrium over time. First, in order to test

for hydrostati
 equilibrium, we perform a simulation without bubbles and 
he
k that the velo
ities

within the unperturbed ICM approa
hing zero. Without using the spe
ial boundaries for our

ICs, whi
h we have des
ribed in se
tion 3.2.3, the 
luster atmosphere does not stand still and

instead �uid velo
ities emerge moving towards the outer edges of the spatial domain. This 
an be

explained sin
e we 
lip the density distribution at 3 r/r0, where the analyti
al beta-pro�le has not

be
ome asymptoti
ally 
lose to zero. Hen
e, the 
luster 
annot maintain hydrostati
 equilibrium

in this 
ase. One 
ould 
lip the density distribution at arbitrarily large r/r0 to ensure that ρ ≈ 0

approa
hes zero at the outer radii, but this would expand the spatial domain to unreasonable

large dimensions in terms of total number of 
ells to keep the resolution 
onstant. Therefore, we

introdu
ed in-/out�ow boundaries, whi
h results in very low absolute velo
ities throughout the

ICM su
h that we 
an 
on�rm hydrostati
 equilibrium.

Next, we 
al
ulate the per
entage 
hange in total energy and in total mass within the boun-

daries of our domain. In �gure 4.22 we show the results for our simulation hB6N2 with the

�du
ial resolution. The total energy is the sum of kineti
, thermal, magneti
 and gravitational

energy (for notation see se
tion 4.1.1). We �nd that by the end of the simulation the loss both

in total energy and total mass is less than one per
ent of the initial value. Despite that the

total energy is not perfe
tly 
onserved, we 
on
lude that our simulations are still feasible and

that our outer boundary 
onditions work �ne. In addition, we have 
he
ked that the HD run

and the ideal MHD run (i.e. without vis
osity) with a very weak magneti
 �eld (β = 106) are

nearly indistinguishable in terms of morphology and show the same 
hara
teristi
s during their

evolution.

Figure 4.22.: Left : The red 
urve shows the per
entage 
hange in total energy taken over the simulation time,

where Etot = Ekin +Eth +EB +Eg. The blue 
urve shows the fra
tional per
entage 
hange in total

energy for ea
h timestep. Right : Similar to the left sub�gure, here plotted with total mass, where

Mtot =
∫
V
mdV .

Next, we perform a resolution study to 
on�rm that our �du
ial resolution is numeri
ally


onverged. This is important to show that the physi
al dynami
s of the �uid motions are
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resolved (to a 
ertain degree). We use the same approa
h as done by Dong and Stone (2009)

sin
e our model setup is quite similar (see se
tion 3.1). We take the hydrodynami
 runs at

four di�erent resolutions, where ea
h resolution gets in
reased by multiplying the number of


ells by a fa
tor of

∼ 3. Note that the simulation labeled "Higher" is identi
al to our �du
ial

one. We show the 
onvergen
e for the kineti
 energy as a fun
tion of time and for 〈vy〉M as a

fun
tion of radius r in �gure 4.23. 〈vy〉M is the absolute value of the verti
al 
omponent of the

velo
ity, mass-averaged over a spheri
al shell at ea
h radii. As Dong and Stone (2009) state,

〈vy〉 should be indi
ating 
onvergen
e quite well sin
e it is a proxy for the buoyant motion of

the bubbles. This does not be
ome very 
lear by looking at �gure 4.23. The two lowest and

the two highest resolutions seem to 
oin
ide with ea
h other, but looking at all of them there

is no asymptoti
 
onvergen
e towards higher resolutions identi�able. The di�eren
e be
omes

even more noti
eable for the kineti
 energies and hints at whether we resolve KHI or not. For

both of the higher resolutions, length s
ales of the perturbations of the KHI seem to be resolved,

whi
h indu
e turbulent motions at the bubble interfa
e and thus higher levels of kineti
 energy.

In addition, those �uid 
ells get dissolved and mixed faster with the ambient gas, whi
h slows

down the rising bubble as it expands, damping 〈vy〉 a little bit. In fa
t, we do want the KHI

to be resolved in order to be able to infer how e�e
tively Braginskii vis
osity suppresses the

ma
ro-s
ale instabilities. Therefore, we fo
us on analysing the �du
ial run as it is very 
lose to

our highest resolution simulation both quantitatively in terms of Ekin and 〈vy〉 and qualitatively

in terms of morphology. We expe
t, if we would have gone even one step higher in resolution, it

would still resemble the 
urves of our highest resolution. We note that in
reasing the resolution

even further would not be easily a
hievable, be
ause the Braginskii timestep is proportional to

the 
ell size squared, ∆tBrag ∝ (∆x)2 (see se
tion 2.4.1).

Figure 4.23.: Left : Convergen
e test plotting the kineti
 energy for ea
h of our hydrodynami
 resolutions. The

resolution labeled "Higher" is identi
al to our �du
ial resolution. We set the next higher resolution

by in
reasing the number of 
ells N by a fa
tor of

∼ 3. Right : Convergen
e test plotting the verti
al

omponent of the velo
ity, mass averaged over a spheri
al shell as a fun
tion of radius of that shell

at t/t0 = 5.

We also 
ompare the bubble morphology for ea
h of our four resolutions in �gure 4.24. The

passive s
alar mass fra
tion is plotted to fo
us on di�eren
es due to mixing. The global evolution
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has been already analysed in se
tion 4.1, whi
h we will not repeat here. We 
on�rm that the

�rst two and the last two resolutions show similar morphologies to ea
h other. A main di�eren
e

between both groups is that the rise velo
ity of the bubble front s
ales with resolution. This


orrelation has been found for jet-in�ated bubbles as well (Bourne and Sija
ki, 2017; Weinberger

et al., 2017). The bubble front travels further in higher resolution simulations, whi
h implies

that it is important to su�
iently resolve the velo
ity gradient. It 
an also be 
learly seen that

the two big eddies, indu
ed by KHI, and the mixed bubble gas they drag along with them, get

mu
h better resolved with higher number of 
ells. This is needed to quantify e.g. vis
ous heating

(see se
tion 4.1.3). The highest resolved simulation shows higher tra
er mass fra
tions at the

top of the bubble, whi
h indi
ates a suppression of RTI 
ompared to the �du
ial resolution run.

Also the eddies stay more 
ompa
ted and pronoun
ed over time.

Figure 4.24.: Proje
ted sli
es of the x-y midplane showing the tra
er mass fra
tion Xbub for ea
h of our hydrodyn-

ami
 resolutions. Ea
h panel spans a spatial domain 
orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0]
and y ∈ [0, 3 r0]. The thin proje
tions in z-dire
tion have width dr = 0.066 r0 
entered at z = 0.

As already mentioned above, there seems to be a jump in mixing 
ontent of bubble material

with the ambient gas between the medium and the �du
ial resolution. We quantify the amount of

mixed gas by plotting the normalised volume fra
tion as a fun
tion of the tra
er mass fra
tion at
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time t/t0 = 8 in �gure 4.25. Both of the higher resolution runs have their values of the 
overing

volume fra
tion shifted towards lower tra
er mass fra
tions 
ompared to the lower resolution runs.

The former ones also peak at higher volume fra
tions of mixed gas. This shows quantitatively

that our higher resolved simulations result in more mixing. This is in 
ontrast to the resolution

studies by Bourne and Sija
ki (2017) and Ehlert et al. (2018) with jet-in�ated bubbles, where

they �nd mixing to be suppressed at higher resolutions. In Bourne and Sija
ki (2017) and Ehlert

et al. (2018) this is due to less numeri
al mixing in AREPO. We believe our higher resolutions

indu
e more mixing be
ause the hydrodynami
 KHI is signi�
antly better resolved than in our

lower resolution runs. Indeed, KHI rolls are visible at the leading edge of the bubble in our

two higher resolved runs, but not in the lower resolution runs. In order to understand why our

simulations have mixing via KHI and Ehlert et al. (2018) do not, we estimate the growth rate of

the KHI in the two setups. To quantify the growth rate of the hydrodynami
 KHI, we take its

dispersion relation for a planar sheet in the in
ompressible, invis
id limit Chandrasekhar 1981,

see also se
tion two in Berlok and Pfrommer (2019):

ω± =
δ ± i2

√
1 + δ

2 + δ
∆v k, (4.15)

where k is the wavenumber (related to the wavelength of the roll by k = 2π/λ), ∆v is the

�ow velo
ity and δ is the density 
ontrast δ = ρbub/ρamb − 1. The growth rate σ is given by

the imaginary part of equation (4.15), su
h that σ = − Im(ω). Thus, for a density 
ontrast

of ρbub/ρamb = 10-2 we get a growth rate of σ ≈ 0.2∆v k, whi
h resembles our model setup.

Ehlert et al. (2018) �x the density 
ontrast to be ρbub/ρamb = 10-4, whi
h yields a growth rate

of σ ≈ 0.02∆v k. So in our simulations, the KHI is one order of magnitude more e�
ient than

in the setup by Ehlert et al. (2018). Sin
e numeri
al dissipation depends on the grid resolution

and the KHI growth rate is proportional to the wavenumber, ergo the grid resolution (Berlok

and Pfrommer, 2019), we 
on
lude that the large di�eren
e in density 
ontrast might explain

why mixing is not suppressed in our �du
ial simulation.

Figure 4.25.: Normalised volume 
overing fra
tion of a given tra
er mass fra
tion of the hydrodynami
 runs for

ea
h of our numeri
al resolutions at time t/t0 = 8 to show the mixing e�
ien
y of the bubble. The

volume 
overing fra
tion is plotted in a

ordan
e to Ehlert et al. (2018).
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Chapter 5.

Dis
ussion

We have shown in se
tion 4.4 with our simulations that not even a turbulent ICM is 
apable of

su�
iently heating the 
luster atmosphere to levels of radiative 
ooling in a volume �lling fashion.

Our heating estimates are thereby restri
ted to only 
onsider parallel vis
ous heating rates arising

from anisotropi
 pressures. Additional heating 
hannels need to be taken into a

ount for a total

pi
ture, but quantifying all of them would be far beyond the s
ope of this thesis. A promising

sour
e is heating by mixing as supported by Hitomi observations of the Perseus 
luster 
ore

(Hillel and Soker, 2017). The heating-mixing me
hanism is 
aused by dissipation of modes

indu
ed by KHI. To get the heating rate via mixing of the ambient 
luster gas we would need to


al
ulate the time derivative of the ambient thermal energy,

∫

V u(Xbub − 1) dV , sin
e we expe
t

the thermal energy at the bubble rim to in
rease if mixing is dominant (Yang and Reynolds,

2016a). This estimate will still not yield how mu
h of the heating is due to mixing, be
ause an

un
ertain fra
tion of this rate is due to pdV work. Sin
e our ICs are based on the setup by Dong

and Stone (2009), we 
an refer to their �ndings that the internal energy of buoyant bubbles

only in
reases by a few per
ent at late times 
on
luding that heating by mixing is not very

e�e
tive for a initially stati
 ICM. However, Dong and Stone (2009) do not in
lude a turbulent


on�guration of the ambient gas in their studies. A
tually, a turbulent atmosphere enhan
es

mixing in 
omparison to our quies
ent ICM with the same thermal-to-magneti
 pressure ratio.

But the turbulent mixing rate does not be
ome more e�
ient than the β = 106 
ase and even for

the latter Dong and Stone (2009) �nd that 
hanges in internal energy are not notable. Hen
e,

we suppose that mixing is subdominant as a heating sour
e in our simulations.

If we want to in
rease the heating rate based on vis
ous heating alone, we probably need

to in
lude AGN-driven bubbles in our ICs, where lobes are in�ated self-
onsistently by sub-

relativisti
 jets. These jets will drive and inje
t turbulent energy into the 
luster 
ore region

with high amounts of vorti
ity in their wake. Additionally, the jet interior will have a highly

tangled magneti
 �eld, whose �eld lines get strongly bended. This turbulent 
on�nement leads to

in
reasing levels of rate of strain and magneti
 �eld strength and eventually higher Q+
rates. How

mu
h 
loser that vis
ous heating rate will be to Q−

ompared to our setup with arti�
ially stati


bubbles might depend on the spe
i�
 jet model implementation. So for instan
e, whether multiple

epo
hs of jet a
tivity will be simulated to inje
t turbulent modes on a roughly 
onstant rate,

whi
h 
an ultimately lead to isotropi
 jet heating of the entire 
luster 
ore region (M
Namara

and Nulsen, 2012). Here, isotropi
 means that due to jet pre
ession and atmospheri
 pressure

gradients multiple sequently in�ated lobes 
an possibly deposit their energy via weak sho
ks

and sound waves (Bambi
 and Reynolds, 2019) over mu
h of the 
luster volume of the inner

atmosphere. Su
h a fully turbulen
e-driven 
luster atmosphere will theoreti
ally be 
apable of

balan
ing Q+/Q− ∼ 1 as we have shown in �gure 4.18.

As Kunz et al. (2011) show, the global self-regulated me
hanism of vis
ous heating and radia-

tive 
ooling, whi
h 
an mitigate 
ooling �ows and prevent a 
luster 
ore 
ollapse, 
an probably

also be established lo
ally. If we re
all equation (4.14) from se
tion 4.3 for the vis
ous heating

rate (per unit volume),

Q+
lim = 7.7× 10-27 ξ2

( ‖B‖
10µG

)4( kBT

3.34 keV

)−5/2

erg cm-3 s-1,
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we infer that the strong dependen
e on ‖B‖ 
omprises the impli
it dependen
e on density and

the rate of strain of the turbulen
e. So, as turbulent velo
ities in
rease, 
on
omitant will the

magneti
 �eld strength and thus the dissipation rate Q+
will in
rease a

ordingly. Therefore,

Q+

an be lo
ally self-regulating, in a sense that it is 
ompletely independent of the AGN, a
ting

as an external sour
e providing the turbulent energy globally (Kunz et al., 2011). But with the

addition, that the lo
al self-regulation is only maintained as long as there is enough turbulen
e

to pin the pressure anisotropy at its stability thresholds. Kunz et al. (2011) note that due to the


onstraint on the turbulent rate of strain (set by mi
ro-s
ale instabilities), not all of the external

power inje
ted by driving turbulen
e is ne
essarily thermalized lo
ally. In fa
t, the turbulen
e

may have an e�e
tive ex
ess in its amount of power, where only those turbulent modes get

dissipated at the lo
al vis
ous s
ale that do not trigger the mi
roinstabilities. The remaining

power 
ould be transported elsewhere (Kunz et al., 2011).

5.1. E�e
tive Reynolds Number

By analysing the unlimited �du
ial run in se
tion 4.1, we also 
al
ulated the parallel vis
ous

heating rate Q+
lim, where ∆p is arti�
ially restri
ted a

ording to the mi
ro-s
ale limiters in the

post-pro
essing analysis. With the model xB6N2lim the entire simulation has already been run

while applying the hard-wall limiters to the pressure anisotropy, whi
h is a�e
ting the evolution

of the bubble signi�
antly (see �gure 4.10). Thus, we have studied how the vis
ous heating rate


hanges in this 
ase in �gure 4.11. St-Onge et al. (2020) �nd that if ∆plim is limited to remain

within the �rehose and mirror instability thresholds a

ording to inequality (2.48), then implies

an enhan
ed 
ollisionality in the unstable regions given by

νeff ∼ β(bb : ∇v), (5.1)

where νeff is the e�e
tive ion-ion 
ollision frequen
y and the right-hand side is the produ
t of

the plasma beta and the rate of strain while assuming in
ompressibility (see equation (2.44)).

In 
ase of xB6N2lim, we have set β = 106 and thus a

ording to equation (5.1), the enhan
ed


ollisionality will redu
e vis
ous stresses drasti
ally, whi
h we 
ould verify with our simulations,

be
ause xB6N2lim and hydro are very 
lose in terms of mixing e�
ien
y and show mu
h lower

dye entropy S 
ompared to the unlimited run xB6N2. From equation (5.1) Melville et al. (2016)

and St-Onge et al. (2020) estimate the e�e
tive parallel-vis
ous Reynolds number Re‖eff as

Re‖eff =
vLL

µ‖eff
∼ β2M4, (5.2)

where µ‖eff = v2th/νeff is the e�e
tive parallel vis
osity and M = vL/vth is the ma
h number

(see also se
tion 2.3.4). So, for β = 106 the e�e
tive vis
osity be
omes negligible and in turn

Re‖eff indi
ates a highly turbulent medium. As the KHI and RTI inje
t energy into the turbulent


as
ade via �eld-stret
hing/
ompressing turbulent velo
ities (see se
tion 2.3.3), the parallel rate

of strain s
ales as |bb : ∇v| ∼ vl‖/l‖ ∝ l
-2/3
‖ (St-Onge et al., 2020). Hen
e the magnitude of the

rate of strain is largest at the e�e
tive parallel vis
ous s
ale leff , where turbulent motions are

dissipated. At this vis
ous 
uto�, St-Onge et al. (2020) �nd that

leff ∼ LRe
-3/4
‖eff ∝ B3, (5.3)

whi
h is smaller than the unlimited vis
ous s
ale lvisc, whi
h we have introdu
ed in se
tion 2.3.3:

V 1/3 ∼ λmfp ∼ lvisc > leff . While 
hoosing higher values for β, B is de
reasing and thus lowering
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the vis
ous 
uto� s
ale, whi
h in turn requires higher numeri
al resolution in order to 
orre
tly

pi
ture the level of vis
osity in the system.

The e�e
tive Reynolds number also needs to be a

ounted for when 
onsidering the numeri
al

di�usivity for the highest wavenumbers limited by the grid resolution in a given volume (Donnert

et al., 2018). They argue that Re of a turbulent �uid �ow is not only set by the vis
ous dissipation

s
ale but is also redu
ed by the 
ut-o� of velo
ity power at the numeri
al dissipation s
ale. So, if

the grid resolution does not resolve the smallest s
ales of the velo
ity (or magneti
 �eld) power

spe
trum, numeri
al errors take away that power, whi
h e�e
tively redu
es the rate of strain

and thus results in smaller vis
ous heating rates. In other words, a less di�usive numeri
al 
ode

rea
hes higher e�e
tive Reynolds numbers and a more broader dynami
al range at the same

resolution. This relation is quanti�ed by Donnert et al. (2018) as

Reeff ≈
(

L

ǫ∆x

)4/3

, (5.4)

where L is the outer inje
tion s
ale, ∆x = V 1/3
is the resolution element and ǫ is a fa
tor

depending on the di�usivity of the numeri
al method used. For the �nite-volume 
ode AREPO

this fa
tor is assumed to be ǫ ≈ 7, whi
h is smaller than for smoothed-parti
le hydrodynami
s

(SPH) or hybrid 
odes (see referen
es in Donnert et al. (2018)). Equation (5.4) implies that

de
reasing either the fa
tor ǫ or the grid resolution in
reases Reeff , whi
h in turn broadens the

inertial range (shrinks the e�e
tive dissipation s
ale), in
reases the velo
ity power (rate of strain)

on small s
ales and redu
es vis
osity.

Furthermore, bubble stability 
ru
ially depends on the numeri
al method used while the re-

solution is kept the same. What role di�erent hydrodynami
al s
hemes play on the evolution of

buoyantly rising bubbles has been studied by Ogiya et al. (2018). After initialising ea
h simula-

tion in the same way, Ogiya et al. (2018) �nd that KHI fully dissolves the bubble in the ICM on

relatively short time-s
ales for the meshless �nite mass (MFM) s
heme and the RAMSES simu-

lations, while for smoothed-parti
le hydrodynami
s (SPH) the bubble survives. So the 
hoi
e of

a hydrodynami
al solver 
an lead to systemati
 di�eren
es on the out
ome, whether it 
aptures

the relevant �uid instabilities.

5.2. Limitations

As pointed out in 
hapter 3, we model an idealized 
luster 
ore in order to isolate the e�e
ts of

Braginskii vis
osity in a weakly 
ollisional ICM. Therefore, we have to negle
t some realisti
ness

in our 
luster model in favor of 
omprehensibility of the underlying physi
al pro
esses. Step

by step we add more 
omplexity to our simulations, but some limitations remain untou
hed

nonetheless.

At �rst, instead of a CC, we assume a perfe
t isothermal ICM with no small- or large-s
ale

gas motions throughout the atmosphere. In real systems this is rarely the 
ase sin
e the gas


an be disturbed by re
ent merger events or the AGN a
tivity itself. So, the 
luster atmosphere

does not need to be ne
essarily relaxed. Nonetheless, we set buoyant bubbles into a hydrostati


equilibrium modelled by a single-β density pro�le. Su
h beta pro�les su�
iently �t the density

distribution and X-ray surfa
e brightness pro�les for an isothermal 
luster, but studies �nd that

they yield wrong mass pro�les in the 
luster outskirts (Xue and Wu, 2000). Nevertheless, sin
e we

model the 
ore region, we are not 
omputing the mass distribution at radii near r200. Moreover,

the gravitational potential is following the beta pro�le instead of a more sophisti
ated NFW

distribution for dark matter.
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We do not model the formation and in�ation of the bubble via a powerful radio jet. In fa
t,

we 
ompletely ignore the jet-feedba
k me
hanism (JFM) (Soker, 2016), where jet-driven bubbles

are in�ated over multiple epo
hs of a
tivity. Soker (2016) �nd that the morphology of simulated

bubbles mat
hes with observations, if they are in�ated by slow (sub-relativisti
), massive jets.

The jets play a 
ru
ial role a�e
ting the stability and mixing e�
ien
y of the longevity of the

bubbles after they are in�ated. A

ording to Soker (2016), studying the dynami
s of the buoyant

evolution of a bubble initially at rest is not very desirable and simulations approa
hing the JFM

should be favoured.

As mentioned in se
tion 2.2.1, the exa
t 
omposition of the bubble interior 
annot be inferred

dire
tly due to the very low bubble densities. But observations suggest that radio lobes are

a
tually �lled with a strongly magnetized relativisti
 plasma (Laing and Bridle, 2014). An

additional pressure 
omponent is needed for the bubbles to explain the dis
repan
y with the

observed ambient ICM pressure (Croston and Hard
astle, 2014), see se
tion 2.2.3. CR protons

seem to be a likely 
andidate for su
h a pressure 
ontribution. These protons 
ould be a

elerated

in the jet to build a relativisti
 plasma population (Pfrommer, 2013). However, we treat the

bubble material simply as a very hot thermal gas with γ = 5/3 and omit CR protons 
ompletely,

although CR heating 
an be
ome quite e�
ient in the very 
enters of CCs to o�set radiative


ooling (Ja
ob and Pfrommer, 2017b). In addition, we assume that the lobe interior is magnetized

the same way as the ambient ICM (either uniform or turbulent), whereas numeri
al studies �nd

that very likely a toroidal magneti
 �eld dominates and stabilizes the bubble in�ated by energeti


jets (O'Neill and Jones, 2010; Huarte-Espinosa et al., 2011; Soker, 2016).

Furthermore, we la
k an expli
it term for radiative 
ooling in our energy equation (2.36). Using

equation (2.12), the 
ooling time at the very 
enter of our 
luster 
ore is tcool ≈ 1.8Gyr, whi
h

in
reases to tcool ≈ 9Gyr at the outer boundary of our domain. Hen
e, the 
luster 
ooling times

are longer than the simulation times, allowing us to negle
t 
ooling in our simulations. However

in real CCs, 
ooling gas a

retes onto the 
entral SMBH and indu
es motions. We also negle
t

thermal 
ondu
tivity in terms of an anisotropi
 heat �ux tensor in our set of Braginskii-MHD

equations. On the one hand, anisotropi
 
ondu
tion 
an make the radial temperature gradient

unstable in CCs and thus introdu
e the heat �ux driven buoyan
y instability (HBI), whi
h may

suppress anisotropi
 thermal 
ondu
tion (Kunz et al., 2012; M
Namara and Nulsen, 2012). On

the other hand, if the CC is threaded with a tangled magneti
 �eld, thermal 
ondu
tivity is

suppressed below the Spitzer value by at least one order of magnitude (M
Namara and Nulsen,

2007). Condu
tive heating is neither thermally stable (Kunz et al., 2011) nor 
an it balan
e

radiative 
ooling throughout the 
ore (Yang and Reynolds, 2016b), but probably be
omes e�
ient

in the outer skirts of the 
luster (Ja
ob and Pfrommer, 2017a).

We also 
onsider the plasma �uid as a mono-phase �uid, only 
onsisting of fully ionized

hydrogen, whereas in real 
lusters the hydrogen mass fra
tion is about 3/4 (with 1/4 helium

mass fra
tion and negligible metal fra
tion). Taking this into a

ount would not just tune the

mean mole
ular weight, it would also a�e
t the vis
osity 
oe�
ient, sin
e ν‖ then depends on

the 
ollision frequen
ies νH-H, νH-He and νHe-He (see Appendix B in Berlok and Pessah 2015).

Lastly, we do not attempt to in
lude the temperature dependen
e of ν|| ∝ T 5/2/ρ a

ording

to Spitzer (1962) in our 
al
ulations. However, Reynolds et al. (2005) state that they 
ould


on�rm with their simulations that the evolution of the bubbles is not qualitatively a�e
ted by

the 
onstant non-Spitzer ν|| assumption. On the other hand, the temperature dependent vis
osity


oe�
ient inside lobes would very likely be unphysi
ally large. If su
h a bubble is i.e. 100 times

hotter (and in turn 100 times less dense) than the ambient ICM, the Spitzer vis
osity would be

three orders of magnitude greater. Therefore, numeri
al simulations use an upper limit for µsp

(Kingsland et al., 2019).
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Chapter 6.

Con
lusions and Future Perspe
tive

We have performed 3D Braginskii-MHD simulations of arti�
ial AGN-in�ated bubbles in an

isothermal 
luster 
ore to study the buoyant rise of these bubbles and its evolution in
luding

the e�e
ts of weak magneti
 �elds and anisotropi
 vis
osity. We have varied di�erent 
ases of

vis
osity (
onstant fa
tor, un-/limited, isotropi
) and the magneti
 �eld (geometry, strength) to

in
rease the level of 
omplexity step by step in order to get a 
omprehensible pi
ture on the

impa
ts on the modelled ICM. Our 
on
lusions are as follows:

1. If the magneti
 tensions are negligibly weak (β = 106) and Braginskii vis
osity su�
iently

strong, the bubble evolution is drasti
ally altered whether the pressure anisotropy ∆p is

bounded due to mi
ro-s
ale instabilities or not. If pressure anisotropy is limited within

marginal stability levels, the very high plasma beta shrinks the range of ∆plim signi�
antly

and 
on
omitant the vis
ous stresses are highly suppressed by the mi
roinstabilities su
h

that they 
an no longer prevent the bubbles from disruption, resembling the invis
id 
ase.

If ∆p is not limited, vis
ous stresses are 
apable of e�e
tively suppressing ma
ro-s
ale

instabilities like RTI and KHI su
h that the bubble rim stays 
oherent over mu
h longer

time-s
ales 
ompared to the invis
id 
ase. Independent of ∆p, we show that a very high

density 
ontrast between bubble and ambient gas density suppresses KHI as well.

2. Anisotropi
 dissipation of momentum transport is distin
tively a�e
ting the bubble mor-

phology by initiating uniformly aligned magneti
 �eld lines into a weakly 
ollisional plasma.

In the dire
tion parallel to the �eld, ma
ro-s
ale instabilities are e�
iently suppressed, while

having little e�e
t perpendi
ular to the �eld.

3. The magneti
 �eld is not dramati
ally enhan
ed at the bubble front as it buoyantly rises.

The �eld lines are probably not 
ompressed as mu
h to form a e�
ient draping layer in

order to provide su�
ient stability.

4. We 
omputed the mixing e�
ien
y of the bubble interior with the ambient gas in three

di�erent ways by deriving the volume 
overing fra
tion, the gas 
lumping fa
tor and the dye

entropy S. We 
on
lude that analysing the dye entropy is the most insightful method while

being intellegibly to interpret. We �nd the following ordering: Shydro > Slim > SBrag > Siso.

5. Isotropi
 Navier-Stokes vis
osity resembles observed X-ray 
avities quite well and suppres-

ses RTI and KHI e�e
tively over the entire simulation time. None of our other simulated

models rea
hes mixing rates as low as with isotropi
 vis
osity. However, we are probably

overestimating the isotropi
 vis
osity 
oe�
ient by a fa
tor of ∼ 800.

6. Using a stronger magneti
 �eld, where β = 102 is in a

ordan
e with observed values of

galaxy 
lusters, reveals an invarian
e in bubble evolution in terms of mixing e�
ien
y and

vis
ous heating regardless of whether limiting pressure anisotropy or not. We show that

the plasma beta is high enough to yield a broader range for the rate of strain su
h that the

produ
tion of ∆plim rarely triggers mi
roinstabilities, e�e
tively resulting in unsuppressed

Braginskii vis
osity.

7. Produ
tion of anisotropi
 pressure leads to parallel vis
ous heating, whi
h depends on

the rate of strain of turbulent motions and enhan
ed magneti
 �eld strength indu
ed by
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strongly bended �eld lines. The inferred vis
ous heating rates Q+
are not high enough to

balan
e radiative 
ooling Q−
in a volume �lling fashion. This shows that vis
ous dissipation

is not very e�
ient in heating the ICM in our simulations.

� Averaged over the entire 
luster (regardless of �eld geometry): Q+/Q− ∼ 10-3

� Averaged over the bubble region (regardless of �eld geometry): Q+/Q− . 10-1

� Q+
seems to be independent on the initial plasma beta, if one ignores kineti
 limiters

� As predi
ted by Kunz et al. (2011), if levels of pressure anisotropy rea
h marginal

stability thresholds throughout the entire spatial domain where β = 102: Q+/Q− ∼ 1

� For β = 106: Q+ ∼ (10− 100) ×Q+
lim

� For β = 102: Q+ ∼ Q+
lim

8. If the ICM is turbulent with an initial magneti
 �eld following a Kolmogorov power

spe
trum, not even magneti
 �eld lines with 
oheren
e lengths greater than the bubble

size 
an prevent the deformation of the bubbles. The 
ontribution of vis
ous heating from

ambient turbulent motions has no signi�
ant impa
t on the Q+/Q−
ratio as these motions

get relatively qui
kly dissipated and are not re-inje
ted again.

In future work, it will be insightful to study the e�e
ts of Braginskii-MHD on a more sophi-

sti
ated 
ool-
ore 
luster model in order to investigate whether Braginskii vis
osity is a primary

me
hanism for suppressing �uid instabilities (Kingsland et al., 2019) and/or vis
ous heating is

a signi�
ant heating 
hannel to viably quen
h 
ooling �ows. Su
h advan
ed simulations should

in
lude self-
onsistently in�ated bubbles driven by AGN jets, a NFW density pro�le, a mixture

of relativisti
 CRs and hot thermal gas for the bubble interior and an initial tangled magneti


�eld, whose turbulent energy will be inje
ted over multiple AGN outbursts. The simulations

should be able to resolve the (e�e
tive) vis
ous dissipation s
ale and a

ount for mi
ro-s
ale

instabilities in form of e.g. hard-wall limiters to 
apture the physi
s of the ICM 
orre
tly.
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Appendix A.

Supplementary Figures

Figure A.1.: Low resolution simulations of the hydro model whi
h have been run with di�erent values of the

smoothing parameter a for the analyti
al pro�le of the tra
er mass fra
tion used in equation (3.11).

From left to right a is equal to 0.01, 0.05 and 0.5, respe
tively.

Symbol Quantity

β plasma beta

β index of King model

c speed of light

cs isothermal sound speed

g gravitational a

eleration

G gravitational 
onstant

γ ratio of spe
i�
 heats

gff Gaunt fa
tor

h Hubble parameter

H0 Hubble 
onstant

~ redu
ed Plan
k 
onstant

k wave number

kB Boltzmann 
onstant

kBT temperature in eV

L 
hara
teristi
 length s
ale

me ele
tron mass per parti
le

mp proton mass per parti
le

Table A.1.: List of 
ommon physi
al quantities used in

this thesis.

Symbol Quantity

µ mean mole
ular weight

µ dynami
 vis
osity

ne ele
tron number density

ni ion number density

νii ion-ion 
ollision frequen
y

ν kinemati
 vis
osity

ν‖ anisotropi
 vis
osity

PB magneti
 pressure

Pth thermal pressure

ρamb ambient density

ρbub bubble density

S entropy

Tg gas temperature in K

tH Hubble time

u internal energy

vth thermal velo
ity

ω angular frequen
y

Ze ele
tri
al 
harge

Table A.2.: List of 
ommon physi
al quantities, 
onti-

nued.
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